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Statistical Ray Tracing in Plasmas with Random
Density Fluctuations

Statistical ray tracing is a method of describing the random behavior
of tight rays in a plasma in terms of the statistical properties of the
random electron density component. As in the earliest random-
medium propagation formalisms, this method is based on the use of
geometrical optics to sample the random density fluctuations with light
rays.'®
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The random-walk spreading of beams of light due to random density
fluctuations is of interest to laser fusion because spreading reduces
small-scale illumination nonuniformities and because the efficiencies
of various energy absorption mechanisms lose some of their angle-of-
incidencce dependence as the beam acquires a wider angular
distribution. Such considerations could affect target illumination
uniformity, which is a crucial quality factor in the success of high-
compression implosions.® The results of virtually any laser-plasma
interaction experiment where properties of reflected or transmitted
light are being measured are bound to be affected at some level by
random density fluctuations. The use of the spreading of transmitted
or reflected laser beams as a corona-structure diagnostic is not
without precedent; Chandrasekhar' was among the first to use the
random motion and scintillation of steflar images to obtain estimates of
the relevant scale lengths and density fluctuation amplitudes of the
turbulent atmospheric layer causing this behavior.

The theory of wave propagation in random media has advanced
beyond the geometrical-optics formalisms®® and has been applied to
ionospheric scattering® and marine acoustics® Even though our
immediate concern is laser fusion, it should be noted that the work to
be described in this article is potentially applicable to wave
propagation in random media in other physical contexts.

An important result of our work has been the extension of statistical
ray-tracing techniques to problems where the non-random “back-
ground” density component is inhomogeneous. It has been found that
a strongly refracted beam of light will not only spread due to the
random density fluctuations; its mean (center) ray will also drift slightly
from the path taken by the unperturbed, zero-fluctuation ray path. To
our knowledge, such a drift has never been derived or described in a
statistical ray-tracing theory, but it is a necessary part of a quanti-
tatively complete beam-propagation theory. A drift term has been
formally expressed in a wave diffusion theory by Carnevale et al., but
this term was not evaluated for circumstances general enough to give
a nonzero result for this effect.”

The calculation of energy ahsorption efficiencies in the presence of
density fluctuations superimposed upon an idealized density profile
has been considered elsewhere for coherent disturbances of the
density profile® and for random density fluctuations confined to
restricted regions along density gradients near the critical surface
where resonance absorption occurs " The formalism to be discussed
here deals more directly with the propagation of the light and
considers random density fluctuations throughout the plasma, so that
the results depend upon the statistical properties of the plasma as a
whole, rather than on a restricted class of coherent density ripples or
on fluctuations in a restricted region.

To demonstrate the use and validity of statistical ray-tracing, resuits
for the cvolution of intensity profiles of beams incident on a plane-
parallel linear-profile plasma will be presented and compared with
numerical Monte-Carlo results.
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The statistical-ray-tracing approach is applicable only to problems
where the electron-density profile can be decomposed into a non-
fluctuating component and a random component that gives each ray
in a beam of light a random perturbation. In hydrodynamic simulation
codes, the light intensity distribution is often computed by tracing an
ensemble of rays, ray by ray, through the plasma. The electron-density
information from such codes does not include an identification of
random and non-fluctuating components, but the statistical-ray-tracing
method could be useful if such a decomposition could be postulated
ad hoc. For example, one could model the effects of fluctuations
whose scale lengths are too short to be resolved by a computational
fluid mesh. In the illustrative example to be considered below, the non-
fluctuating, unperturbed density component is represented by an
idealized analytic form. This allows the intensity profile of a beam of
light to be expressed in terms of the solution of a set of coupled
ordinary differential equations. This simplification makes it relatively
easy to study the dependence of the evolution of a beam on the
statistical parameters of the density fluctuations; a much greater effort
would be required to obtain a large data base from Monte-Carlo
calculations.

Statistical Ray-Tracing Theory
To calculate the behavior of a statistical ensemble of perturbed ray
trajectories, one begins with the geometrical optics ray equation
d, - v
HgsV=Vu-v(v: V), (1a)

p=(1-n/n.)" (1b)

for the deflection of the ray direction vector v at a point along the ray
trajectory specified by the path-length parameter s. The index of
refraction y is given here in terms of the electron density n, and the
critical electron density n_. The ray equation relates ray-trajectory
perturbations to zero-mean density perturbations én superimposed
upon a background density n;, where

N, =N, + 8n, (2a)
and
<én>=0. (2b)
The brackets here denocte a local average. This perturbation approach
requires that the rms amplitude of the density fluctuations, ¢, be small
so that the relative fluctuations of the index of refraction are small.
This condition is simply
o<<n.—n, or &u/u<<A, (3a)

where

0° = <én*>. (3b)
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The density fluctuations are characterized by a correlation length h

that must be much smaller than the overall scale length L of the
problem. For the present, a suitable example is

<6n (X) én (x + AX)>
= g(X) a(x + AX) exp (— AX - Ax/h?), (4a)
where
h<<L~n,/| Vn,|~0c?/| Va?|. (4b)

This example contains a long-scale-length spatial dependence in
addition to the short-scale-length Gaussian cutoff.

By passing a sequence of rays from a pencil beam through a large
sample of these fluctuations, the following equation for the mean-ray
direction vector <v>> is obtained:

d [Vn, =V (v-Vn)]
ds <V =- 2(n.—n,)
[Va? —v (v - Vo?)] T a?
8(n. — n,)’ 2 h(n.—n.7 v )

Each ray has the same initial direction vector v. Equation (5) is
obtained by integrating Eq. (1a) over a path interval that is small in
comparison with the overall scale length of the problem, yet long
enough in comparison with the correlation length, so that the non-
accumulating effects of the fluctuations average out. In obtaining
Eq. (5), Egs. (1) and (2) must be iterated at least once for the lowest-
order nonzero fluctuation effects to appear.

The first term in Eq. (5) represents the refraction of the rays due to
the unperturbed density gradient. The second term represents an
additional drift due to the gradient of the fluctuation amplitude, and the
third term represents the foreshortening of the mean direction vector
due to the spreading of the individual rays away from the mean
direction. The net shift and spreading occur because correlations in
the density fluctuations cause the random impulses to fortuitously
reinforce each other. It is significant that no drift effect due to the
simultaneous presence of density fluctuations and a nonzero back-
ground gradient is found. The slowing term due to the spreading of the
beam agrees with the earliest results in ray statistics."?

The angular spreading rate of the light beam is obtained by solving
Eq. (1a) to lowest order in én and forming the ensemble average of the
sguare of the ray deflections. This gives

d o’

£<VL'VL>:W"’W
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which is the growth rate of the mean-square angular radius of the ray
distribution. The growth rate is just what one would expect for a
random walk in the profile plane where each ray receives a random
angular displacement of roughly o/(n.-n,) radians from each inde-
pendent fluctuation it traverses, or, equivalently, once per correlation
length h along its path. The total rms angular displacement is
essentially the displacement due to one impuise, or one fluctuation,
multiplied by the square root of the number of impulses, just as is
indicated by the form of Eq. (6).

Solving an llustrative Problem

The prablem to be considered below is that of a beam spreading as
it refracts through a plane-parallel uniform-gradient plasma. The
solution is cast in the form of an elliptical Gaussian ray distribution in
the profile plane of the beam. This plane is represented in Fig. 17 by
the X-Y axes placed normal to the trajectory of the mean ray, x (s), at
the point denoted by s. The unperturbed trajectory x (s) is assumed to
be known from the seolution to this problem for ¢=0. The displacement
of the mean ray from the unperturbed trajectory can be found by
integrating the beam shift term in Eq. (5). The beam profile distribution
is centered on the mean ray and is represented in Fig. 17 by an iso-
intensity surface, such as the rms beam-radius surface. The cvolution
equation for this distribution is calculated by propagating each
infinitesimal phase-space element of the distribution an infinitesimal
distance while allowing each element to broaden at the rate given by
Eq. (6). The evolution equation itself and the details of its derivation
and solution will be presented elsewhere. The beam-profile intensity
distribution can be written in terms of the profile-plane phase space
(X,,V )inthe form

_ xe 2XV, V2
(X, Vﬁqexp{ “[i@ o,(8) Cx<s>]
~[ oA, W ” -
afs)  b(s)  cys) |) (

where either of the principal (X or Y) axes remains in a plane parallel
to the constant-density surfaces of the unperturbed plasma as the
refraction of the mean beam rotates the profile plane. The evolution
equation for f reduces to a set of coupled ordinary differcntial
equations for the six parameters in Eq. (7}, a,(s), ay(s), etc. For cases
without the high degree of symmetry of the plane-paralle! problem,
more parameters may be needed.

Statistical and Monte-Carlo Results for the lllustrative Problem
The plane-parailel plasma considered here is illustrated in Fig. 18
with superimposed isodensity contours for typical density fluctuations
with constant rms amplitudes of 4% and 1% of the critical density.
Density fluctuations such as these are generated for the Monte-Carlo
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solutions to this problem. These fluctuations are expressed within the
Monte-Carlo calculation as a Fourier series with component ampli-
tudes set according to the discrete spectrum needed to give the
correlation function in Eq. (4a) and with phases taken from a random-
number generator. The Fourier components in frequency space are
chosen such that the fluctuations and the correlation function are
periodic in space with the period chosen to be equal to one scale
length L. The electron density can be written as

n, = (x/Ln, + én(x, y, ). (8)

rms ray
displacement
surface

TC1564

Fig. 17

A slatistical description of a light beam consists of an intensity distribution in the phase space
transverse to the mean ray trajectory, x(s), at a point specified by the path-length parameter s. The
mean ray is generally shifted from the path of the unperturbed ray. x,(s). The beam envelope,
defined by the rms displacement of rays from the mean ray along any direction in the profile plane,
provides a concrete visualization of the beam.

The correlation length in this example is chosen to be h/L = 0.1. Each
frame in Fig. 18 shows how a typical ray wanders from the unper-
turbed path due to these fluctuations.

Figure 19 shows how 49 different rays propagate through these
same two plasmas. For each ray, the phases of the fluctuation Fourier
components are changed. The rms spatial widths of these beams
calculated according to the statistical-ray-tracing method can be used
to construct the rms beam envelope. The boundaries of this envelope
in the plane of refraction of the unperturbed ray are drawn in Fig. 20 so
that Figs. 19 and 20 can be compared by superposition. Most of the
Monte-Carlo rays lie within the rms boundaries. It is interesting to note
that qualitative features, such as the focusing of the beam just after
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Fig. 18

Plane-paratiel uniform-gradient plasmas with superimposed density fluctuations indicated by
isodensity contours. Cases with rms fluctuation amplitudes of o/n. = 0.01 and 0.04 are shown. The
correfation length h is chosen to be h/L = 0.1. Each frame shows how a typical ray wanders from
the unperturbed path due to the given fluctuations.

the turning point, are reproduced. This focusing by the background
density gradient gives the beam an elliptical profile.

A more quantitative comparison of the Monte-Carlo and statistical
methods is shown in Fig. 21 where the rms angular radii (at the point
of emerging from the plasma) are piotted as functions of the angle of
incidence. The emerging beam profile is elliptical with principal axes in
and normal to the unperturbed plane of refraction. Here, o/n. = 0.01
and h/L = 0.1. The scatter of the Monte-Carlo points is due to the
limited number {27) of trials taken per run. The agreement of these
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Fig. 19

Bundles of 49 rays propagating in the same conditions illustrated in Fig. 18. Each ray shown
propagates according to a statistically independent sample of the fluctuation distribution. The
bundles are Monte-Carlo representations of a spreading beam.
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Fig. 20
The outlines of the rms ray-displacement envelopes obtained from the statistical ray-tracing theory
for the same conditions as in Figs. 18 and 19. The agreement between the slatistical and Monte-
Carlo calculations is apparent from the superposition of the corresponding frames of this figure and
Fig. 19.
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Fig. 21

The principal rms angular radii of the
elliptical profile of the beam (at the point
where it emerges from the slab) s plolted
as a function of the angle of incidence of
the initial pencil beam. The conditions
g/n. =001 and h/i = 0.1 are assumed.
The statistical ray-tracing results fall within
the scatter of the dots representing Monte-
Carlo calcutations.
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points with the statistical theory curves is well within this scatter. The
spatial width of the emerging beam obtained by both methods is
plotted in Fig. 22, where the agreement between the statistical curve
and the scattered Monte-Carlo points is also apparent. The isolated
"X in both Figs.21 and 22 represents a statistical result for the
singular normal-incidence case. As the initial beam approaches
normal incidence, the distance of closest approach to the critical
surface of the unperturbed ray path becomes smaller, and the small-
perturbation condition, Eq. (3a), is eventually violated. The calculation
of the isolated normal-incidence paint avoids this difficulty by simply
neglecting any beam spreading that occurs within one correlation
length of the unperturbed critical surface. This ad hoc “fix-up” affects
only a small fraction of the total ray path, so it is not unreasonable that
the result should be in rough agreement with the Monte-Carlo resuits.

According to the o-scaling of the angular spreading rate given by
Eqg. (6). the angular and spatial widths given in Figs. 21 and 22 should
scale linearly with ¢. This scaling is verified in Fig. 23 for the spatial



Fig. 22

Same as Fig. 21, except that the principal
rms spatial radii. rather than angular radii,
are plotted.

PROGRESS IN LASER FUSION

24 S S B
¢
| o] o]
p
20 ¥ X__ Statistical Theory
1 © o e Monte-Carlo (3-D) |

.

D
T

.

o]
O —
= \ Out-of-Plane .

\/ (0)

R
/\ N

|

(®) .

TN
h/L = 0.1 M

0 L1 L
0 20 40 60 80

1

rms BEAM WIDTH (1072L)
® o
] [

—_

ANGLE OF INCIDENCE (degrees)
TC1220

beam width in the plane of refraction for an angle of incidence of 20°.
The Monte-Carlo runs verify this linear scaling up to a fluctuation level
of ¢/n, ~ 0.1. At the point along the unperturbed ray most closely
approaching the critical surface, density fluctuations of this magnitude
typically give index-of-refraction fluctuations comparable to the unper-
turbed index of refraction, which violates the small-perturbation
condition, Eq.(3b). The verification of linear scaling for such large
fluctuation amplitudes is a strong indication of the reliability of the
statistical method.

It has been observed experimentally that angle-of-incidence
dependences of energy absorption efficiencies are weaker than
predicted by simple analytical models.® In some cases, such an effect
may be attributable to density fluctuations. Figure 24 shows the
absorption fraction for inverse bremsstrahlung for the plane-parallel,
uniform-gradient plasma considered above, plotted as a function of
the angle of incidence. The circles represent individual two-dimensional
Monte-Carlo calculations for ¢/n, = 0.05 and h/L = 0.1. These are to
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be compared with the solid curve obtained analytically for the ¢ = 0
case.” In these calculations, the absorption coefficient was set such
that 80% absorption would be obtained for normal incidence with
o= 0. The pair of dashed curves, read with the right-hand scale, gives
the statistical theory results for the upper and lower rms beam
boundaries at the point of closest approach to the critical surface, as a
function of angle of incidence. The leveling of the Monte-Carlo angular
dependence occurs at angles of incidence below about 15°, roughly
where the statistical theory predicts a significant concentration of rays
grazing the critical surface, a region accessible only to normally
incident rays in an unperturbed plasma. Further decreases in the
angle of incidence do not increase the concentration of near-critical
rays significantly, just as if the beam were incident on the unperturbed
plasma with an initial angular radius of about 15°,

The dashed absorption curve in Fig. 24 is a simple statistical-theory
estimate of the change in the absorption efficiency due to the given
fluctuations. Since the inverse-bremsstrahlung absorption cross section
increases rapidly with electron density, it is assumed that the energy
absorbed from a ray is most strongly dependent on the maximum
penetration depth and less sensitive to the shape of the path, as long
as the perturbed paths remain reasonably smooth. The statistical
estimate is obtained by convolving the analytical zero-fluctuation
result with a penetration depth distribution obtained from the statistical
calculations. As can be seen in Fig. 24, this statistical estimate gives
results similar to the Monte-Carlo results. The crudeness of the
quantitative agreement is not unexpected, given the simplicity of the
estimate. Nevertheless, both the statistical and Monte-Carlo calcu-
lations give curves that cross the zero-fluctuation result near a 35°
angle of incidence, and the distinct flattening of the angle-of-incidence
dependence of the statistical results occurs very near where Monte-
Carlo results suggest. Closer agreement would certainly be obtained
by making fuller use of the statistical ray distribution over the entire
path of the spreading beam. This has yet to be done. It should be
emphasized, however, that the statistical absorption-efficiency results
are encouraging as examples of what can be obtained using relatively
simple estimates, without resorting to lengthy Monte-Carlo calculations.

Summary

The most significant result of this work is the application of
statistical ray-tracing techniques to strongly refracting plasmas. The
agreement obtained between the statistical and Monte-Carlo methods
verify the reliability of the statistical results. It should be noted that
density fluctuations as small as a few percent of the critical density
with about ten correlation lengths per scale length can result in
angular spreads in reflected beams of the order of 10°. The statistical
method offers a means to obtain estimates of density fluctuation
effects that are otherwise obtainable only by time-consuming Monte-
Carlo methods. Finally, although we have concentrated on laser-fusion
applications, it should be stressed that theories of wave propagation in
random media are of general applicability. The work we have
presented is potentially applicable to a number of other areas.
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