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2.C Statistical Ray Tracing in Plasmas with Random 
Density Fluctuations 

Statistical ray tracing is a method of describing the random behavior 
of light rays in a plasma in terms of the statistical properties of the 
random electron density component. As in the earliest random- 
medium propagation formalisms, this method IS based on the use of 
geometrical optics to sample the random density fluctuations with light 
rays.'-" 
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The random-walk spreading of beams of light due to random density 
fluctuations is of interest to laser fusion because spreading reduces 
small-scale illumination nonuniformities and because the efficiencies 
of various energy absorption mechanisms lose some of their angle-of- 
incidence dependence as the beam acquires a wider angular 
distribution. Such considerations could affect target illumination 
uniformity, which is a crucial quality factor in the success of high- 
compression implos ions.The results of virtually any laser-plasma 
interaction experiment where properties of reflected or transmitted 
light are being measured are bound to be affected at some level by 
random density fluctuations. The use of the spreading of transmitted 
or reflected laser beams as a corona-structure diagno.stic is not 
without precedent; Chandrasekhar' was among the first to use the 
random motion and scintillation of stellar images to obtain estimates of 
the relevant scale lengths and denslty fluctuation amplitudes of the 
turbulent atmospheric layer causing this behavior. 

The theory of wave propagatlon in random media has advanced 
beyond the geometrical-optics formalisms2.and has been applied to 
ionospheric scattering5 and marine acous t i cs .Vven though our 
immedate concern is laser fusion, it should be noted that the work to 
be described in this article is potentially applicable to wave 
propagatlon in random media in other physical contexts. 

An important result of our work has been the extension of statistical 
ray-tracing techniques to problems where the non-random "back- 
ground" density coniponent is inhomogeneous. It has been found that 
a strongly refracted beam of Ilght will not only spread due to the 
random density fluctuations; its mean (center) ray will also drift slightly 
from the path taken by the unperturbed, zero-fluctuation ray path. To 
our knowledge, such a drift has never been derived or described in a 
statistical ray-tracing theory, but it is a necessary part of a quanti- 
tatively complete beam-propagation theory. A drift term has been 
formally expressed in a wave diffusion theory by Carnevale et a / ,  but 
this term was not evaluated for circumstances general enough to give 
a nonzero result for thls effect.' 

The calculation of energy absorption efficiencies in the presence of 
density fluctuations superimposed upon an idealized density profile 
has been considered elsewhere for coherent disturbances of the 
density profile8 and for random density fluctuations confined to 
restricted regions along density grad~ents near the critical surface 
where resonance absorption  occur^.^^''^ The formalism to be discussed 
here deals more directly with the propagation of the light and 
considers random density fluctuations throughout the plasma, so that 
the results depend upon the statistical properties of the plasma as a 
whole, rather than on a restricted class of coherent density ripples or 
on fluctuations in a restricted region. 

To demonstrate the use and validity of statistical ray-tracing, results 
for the evolution of intensity profiles of beams incident on a plane- 
parallel linear-profile plasma will be presented and compared with 
numerical Nlonte-Carlo results. 



The statistical-ray-tracing approach is applicable only to problems 
where the electron-density profile can be decomposed into a non- 
fluctuating component and a random component that gives each ray 
in a beam of light a random perturbation. In hydrodynamic simulation 
codes, the light intensity distribution is often computed by tracing an 
ensemble of rays, ray by ray, through the plasma. The electron-density 
information from such codes does not include an identification of 
random and non-fluctuating components, but the statistical-ray-tracing 
method could be useful i f  such a decomposition could be postulated 
ad hoc. For example, one could model the effects of fluctuations 
whose scale lengths are too short to be resolved by a computational 
fluid mesh. In the illustrat~ve example to be considered below, the non- 
fluctuating, unperturbed density component is represented by an 
idealized analytic form. This allows the intensity profile of a beam of 
light to be expressed in terms of the solution of a set of coupled 
ordinary differential equations. T h ~ s  simplification makes it relatively 
easy to study the dependence of the evolut~on of a beam on the 
statistical parameters of the density fluctuations; a much greater effort 
would be required to obtain a large data base from Monte-Carlo 
calculations. 

Statistical Ray-Tracing Theory 
To calculate the behavior of a statistical ensemble of perturbed ray 

trajectories, one begins with the geometrical optics ray equation1' 

for the deflection of the ray direction vector v at a point along the ray 
trajectory specified by the path-length parameter s. The index of 
refraction p is given here in terms of the electron density n, and the 
critical electron density n,. The ray equation relates ray-trajectory 
perturbations to zero-mean density perturbations 6n superimposed 
upon a background density no, where 

and 

The brackets here denote a local average. This perturbation approach 
requires that the rms amplitude of the density fluctuations, a, be small 
so that the relative fluctuations of the index of refraction are small. 
This condition is simply 

where 
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The density fluctuations are characterized by a correlation length h 
that must be much smaller than the overall scale length L of the 
problem. For the present, a suitable example is 

<6n (x) 6n (x + AX)> 

= a(x) ajx t Ax)  exp ( AX . nx /h2 ) ,  (4a) 

where 

This example contains a long-scale-length spatial dependence in 
addition to the short-scale-length Gaussian cutoff. 

By passing a sequence of rays from a pencil beam through a large 
sample of these fluctuations, the following equation for the mean-ray 
direction vector <v> is obtained: 

d - [Vn, - v  (V * Vn,)] 
d s <v> = - 

2 (n, - no) 

Each ray has the same initial d~rection vector v. Equation (5) is 
obtained by integrating Eq. ( l a )  over a path interval that is small in 
comparison with the overall scale length of the problem, yet long 
enough in comparison with the correlation length, so that the non- 
accumulating effects of the fluctuations average out. In obtaining 
Eq. (5), Eqs. (1) and (2) must be iterated at least once for the lowest- 
order nonzero fluctuation effects to appear. 

The first term in Eq. (5) represents the refraction of the rays due to 
the unperturbed density gradient. The second term represents an 
additional drift due to the gradient of the fluctuation amplitude, and the 
third term represents the foreshortening of the mean direction vector 
due to the spreading of the individual rays away from the mean 
direction. The net shift and spreading occur because correlations in 
the density fluctuations cause the random impulses to fortuitously 
reinforce each other. It is significant that no drift effect due to the 
simultaneous presence of density fluctuations and a nonzero back- 
ground gradient is found The slowing term due to the spreading of the 
beam agrees with the earliest results in ray statistics.'.? 

The angular spreading rate of the light beam is obtained by solving 
Eq. (1  a) to lowest order in 6n and forming the ensemble average of the 
square of the ray deflections. This gives 



which is the growth rate of the mean-square angular radius of the ray 
distr~bution. The growth rate is just what one would expect for a 
random walk in the profile plane where each ray receives a random 
angular d~splacement of roughly ~/(n,-no) radians from each inde- 
pendent fluctuation it traverses, or. equivalently, once per correlation 
length h along its path. The total rms angular displacement is 
essentially the displacement due to one impulse, or one fluctuation. 
multiplied by the square root of the number of impulses, just as is 
indicated by the form of Eq. (6). 

Solving an Illustrative Problem 
The problem to be considered below is that of a beam spreading as 

it refracts through a plane-parallel uniform-gradient plasma. The 
solution is cast in the form of an elliptical Gaussian ray distribution in 
the profile plane of the beam This plane is represented in Fig. 17 by 
the X-Y axes placed normal to the trajectory of the mean ray, x (s), at 
the point denoted by s. The unperturbed trajectory x,(s) is assumed to 
be known from the solution to this problem for u=O.  The displacement 
of the mean ray from the unperturbed trajectory can be found by 
integrating the beam shift term in Eq. (5). The beam profile distribution 
is centered on the mean ray and is represented in Fig. 17 by an iso- 
intensity surface, such as the rms beam-radius surface. The evolution 
equation for this distribution is calculated by propagating each 
infinitesimal phase-space element of the distribution an infinitesimal 
distance while allowing each element to broaden at the rate given by 
Eq. (6). The evolution equation itself and the details of its derivation 
and solution will be presented elsewhere. The beam-profile intensity 
distribution can be written in terms of the profile-plane phase space 
(X,, V,) ~n the form 

Y' 2YVY 
- -- + -- + XI], [ ay(S) by(s) Cy(s) 

where either of the principal (X or Y) axes remains in a plane parallel 
to the constant-density surfaces of the unperturbed plasma as the 
refraction of the mean beam rotates the profile plane. The evolution 
equation for f reduces to a set of coupled ordinary differential 
equations for the SIX parameters in Eq. (7), a,(s), a,(s), etc. For cases 
without the high degree of symmetry of the plane-parallel problem. 
more parameters may be needed. 

Statistical and Monte-Carlo Results for the Illustrative Problem 
The plane-parallel plasma considered here is illustrated in Fig. 18 

with superimposed isodensity contours for typical density fluctuations 
with constant rms amplitudes of 4% and 1 %  of the critical density. 
Density fluctuations such as these are generated for the Monte-Carlo 
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solutions to this problem. These flucluations are expressed within the 
Monte-Carlo calculation as a Fourier series with component ampli- 
tudes set according to the discrete spectrum needed to give the 
correlation function in Eq. (4a) and with phases taken from a random- 
number generator. The Fourier components in frequency space are 
chosen such that the fluctuations and the correlation function are 
periodic in space with the period chosen to be equal to one scale 
length L. The electron density can be written as 

Fig. 17 
A slat~st ical description of a light beam consists of an interisity distribution in the phase space 
transverse to the mean ray trajectory, xis),  at a point specified by the path-length parameter s. The 
mean ray is generally shifted from the path of the unperturbed ray, x,(sj. The beam envelope. 
defined by the rms displacement of rays from the mean ray along any direction in the profile plane, 
provides a concrete visualization of the beam. 

The correlation length in this example is chosen to be h / L  = 0.1. Each 
frame in Fig. 18 shows how a typical ray wanders from the unper- 
turbed path due to these fluctuations. 

Figure 19 shows how 49 different rays propagate through these 
same two plasmas. For each ray, the phases of the fluctuation Fourier 
components are changed. The rms spatial widths of these beams 
calculated according to the stat~stical-ray-tracing method can be used 
to construct the rms beam envelope. The boundaries of this envelope 
in the plane of refraction of the unperturbed ray are drawn in Fig. 20 so 
that Figs. 19 and 20 can be compared by superposition. Most of the 
Monte-Carlo rays lie within the rms boundaries. It is interesting to note 
that qualitative features, such as the focusing of the beam just after 
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Fig. 18 
Plane-paralie1 uniform-gradienl plasmas with super~mposed density fluctuations indicated by 
isodensi'ty contours. Cases witll rms fluctuation arnp!itudes of u l n ,  = 0.01 and 0.04 are shown. The 
correlation :ength h is chosen to be h / L  = 0.1. Each frame shov~s /low a typ~cal ray wanders from 
the unperturbedpath due to the given fiuctual~ons. 

the turning point, are reproduced. This focusing by the background 
density gradient gives the beam an elliptical profile. 

A more quantitative comparison of the Monte-Carlo and statistical 
methods is shown in Fig. 21 where the rms angular radii (at the point 
of emerging from the plasma) are plotted as functions of the angle of 
incidence. The emerging beam profile is elliptical with principal axes in 
and normal to the unperturbed plane of refraction. Here, uln, = 0.01 

i 
and h / L  = 0.1. The scatter of the Monte-Carlo points is due to the 
limited number (27) of trials taken per run. The agreement of these 

i 
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F I ~  21 
The principal rnis angular radi nf the 
elliptical profile of the beam (at the point 
where il emerges from t+e slab) 1s plaited 
as a function of fbe angle of incidence oi 
:he inilia1 reno1 heav  The conditions 
n n, = 0 01 and h ' I  = 0 7 are assu red  
The statistical ray-tracing results fall w~thin 
the scatter of the do!s represeqtlng lulonte- 
Carlo calculations 

Statlstlcal 

o Monte-Carlo (3 -0 )  

ANGLE OF INCIDENCE (degrees) 
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points with the statistical theory curves is well within this scatter. The 
spatial width of the emerging beam obtained by both methods is 
plotted in Fig. 22, where the agreement between the statistical curve 
and the scattered Monte-Carlo points is also apparent. The isolated 
"X" in both Figs. 21 and 22 represents a statistical result for the 
singular normal-incidence case. As the initial beam approaches 
normal incidence, the distance of closest approach to the critical 
surface of the unperturbed ray path becomes smaller, and the small- 
perturbation condition. Eq (3a), is eventually v~olated. The calculation 
of the isolated normal-incidence point avoids this difficulty by s~mply 
neglecting any beam spreading that occurs within one correlation 
length of the unperturbed critical surface. This ad hoc "fix-up" affects 
only a srnall fraction of the total ray path, so it is not unreasonable that 
the result should be in rough agreement with the Monte-Carlo results. 

According to the a-scaling of the angular spreading rate given by 
Eq. ( 6 ) .  the angular and spatial widths given in F~gs. 21 and 22 should 
scale linearly with a. This scaling is verified in Fig. 23 for the spatial 
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Z S t a t i s t i c a l  Theory 
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Same as Fig 27 except that the principal 
rms spatial radii rather than angular radii 
are plolted 

beam width in the plane of refraction for an angle of incidence of 20'. 
The Monte-Carlo runs verify this linear scaling up to a fluctuation level 
of a/nC - 0.1. At the point along the unperturbed ray most closely 
approaching the critical surface, density fluctuations of this magnitude 
typically give index-of-refraction fluctuations comparable to the unper- 
turbed index of refraction, which violates the small-perturbation 
condition, Eq. (3b). The verification of linear scaling for such large 
fluctuation amplitudes is a strong indication of the reliability of the 
statistical method. 

It has been observed experimentally that angle-of- incidence 
dependences of energy absorption efficiencies are weaker than 
predicted by simple analytical models.g In some cases, such an effect 
may be attributable to density fluctuations. Figure 24 shows the 
absorption fraction for inverse bremsstrahlung for the plane-parallel. 
uniform-gradient plasma considered above, plotted as a function of 
the angle of incidence. The circles represent individual two-dimensional 
Monte-Carlo calculations for oln, = 0.05 and h / L  = 0.1. These are to 
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Fig 23 
The rms width, in the unperturbed piane 
of refraction of the emerging beav  piotted 
as a function of the rms density-fluctuation 
amplilude for an angle of inciaence of 20" 
and for hlL=O 1 The predicted liriear 
scaling of the beam width wilt? the fluc- 
tuation amplitude is verified bv Monte 
Cario calculations up to a fiuctuation 
I eve io fo /n  =O 1 

Fig. 24 
Monte-Carlo (circles) and statistical ray- 
tracir~g (dashed curve) estimates of the 
inverse-bremsstrahlung absorption fraction 
are plotted jieft-hand scale) as functions 
of the angie of incidence for the o l n ,  = 
0 0 5 ,  h / i  = 0.1 case. The absorpt~on 
coefficient is chosen lo give 80% absorp- 
tion at normal incidence for the u = 0 
result shown by the solid curve. The 
statistical estimale of the absorption is 
obtained usrng penetrat~on-depth distribu- 
tion results represented by the upper- 
boundary and iower-boundary curves 
(right-hand scale). 

10-I I o - ~  10-3 1 o - ~  
rms PERTURBATION ( a ) 

TC1217 

- Analytic ( a = 0)  
Monte-Carlo ( a = 0.05), 

ANGLE OF INCIDENCE (degrees) 
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be compared with the solid curve obtained analytically for the u = 0 
case.12 In these calculations, the absorption coefficient was set such 
that 80% absorption would be obtained for normal incidence with 
a = 0. The pair of dashed curves, read with the right-hand scale, gives 
the statistical theory results for the upper and lower rms beam 
boundaries at the point of closest approach to the critical surface, as a 
function of angle of incidence. The leveling of the Monte-Carlo angular 
dependence occurs at angles of incidence below about 15", roughly 
where the statistical theory predicts a significant concentration of rays 
grazing the critical surface, a region accessible only to normally 
incident rays in an unperturbed plasma. Further decreases in the 
angle of incidence do not increase the concentration of near-critical 
rays significantly, just as if the beam were incident on the unperturbed 
plasma with an initial angular radius of about 15". 

The dashed absorption curve in Fig. 24 is a simple statistical-theory 
estimate of the change in the absorption efficiency due to the given 
fluctuations. Since the inverse-bremsstrahlung absorption cross section 
increases rapidly with electron density, ~t is assumed that the energy 
absorbed from a ray is most strongly dependent on the maximum 
penetration depth and less sensitive to the shape of the path, as long 
as the perturbed paths remain reasonably smooth. The statistical 
estimate is obtained by convolving the analytical zero-fluctuation 
result with a penetration depth distribution obtained from the statistical 
calculations. As can be seen in Fig. 24, this statistical estimate gives 
results similar to the Monte-Carlo results. The crudeness of the 
quantitative agreement is not unexpected, given the simplicity of the 
estimate. Nevertheless, both the statistical and Monte-Carlo calcu- 
lations give curves that cross the zero-fluctuation result near a 35" 
angle of incidence, and the d~stinct flattening of the angle-of-incidence 
dependence of the statistical results occurs very near where Monte- 
Carlo results suggest. Closer agreement would certainly be obtained 
by making fuller use of the statistical ray distribution over the entire 
path of the spreading beam. This has yet to be done. It should be 
emphasized, however, that the statistical absorption-efficiency results 
are encouraging as examples of what can be obtained using relatively 
simple estimates, without resorting to lengthy Monte-Carlo calculations. 

Summary 
The most significant result of this work is the application of 

statistical ray-tracing techniques to strongly refracting plasmas. The 
agreement obtained between the statistical and Monte-Carlo methods 
verify the reliability of the statistical results. It should be noted that 
density fluctuations as small as a few percent of the critical density 
with about ten correlation lengths per scale length can result in 
angular spreads in reflected beams of the order of 10". The statistical 
method offers a means to obtain est~mates of density fluctuation 
effects that are otherwise obtainable only by time-consuming Monte- 
Carlo methods. Finally, although we have concentrated on laser-fusion 
applications, it should be stressed that theories of wave propagation in 
random media are of general applicability. The work we have 
presented is potentially applicable to a number of other areas. 




