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High-energy ultraviolet (UV) sources are required to probe hot dense plasmas from fusion experiments by using Thomson scattering 
resulting from the lower self-generated background from the plasma in the 180‑ to 230-nm spectral region.1 The fifth-harmonic 
generation (5HG) of a neodymium laser with a 211-nm wavelength fits that window. Recently2 we demonstrated 30%-efficient, 
joule-class fifth‑harmonic conversion of 1053-nm pulses using a cesium lithium borate (CLBO) crystal, but larger crystals are 
necessary for increased UV energy. Also, the extremely hygroscopic property of CLBO crystals requires that they be kept under 
high (+120°C) temperature. Ammonium dihydrogen phosphate (ADP) crystals, which can be grown to much larger sizes, should 
be considered as an alternative way of generating a high-energy beam at 211 nm. 

For cascade 5HG, however, ADP has a significant limitation: phase-matching conditions for sum–frequency generation are 
not met at room temperature. Noncritical phase-matching conditions could be reached by cooling ADP crystals to –70°C. This 
is not trivial, especially for large-aperture crystals, because a definite temperature must be strictly stabilized and maintained 
across the entire crystal. Any holder that keeps a crystal in the vacuum chamber and 
maintains a crystal temperature through thermal conductive contact provides some 
gradient of temperature through a crystal.

The most-effective way to stabilize an entire crystal under low temperature is a 
two-chamber cryostat, where the internal chamber keeps a crystal almost isolated 
from a holder but surrounded by 1 atm of helium gas. The internal chamber is held 
in the high-vacuum external chamber to minimize heating. The cross section of the 
designed and fabricated two-chamber cryostat is shown in Fig. 1. “Cold flow” travels 
down from the liquid nitrogen tank through two hollow cylinders to the internal 
chamber; it then reaches the 65 # 65 # 10-mm ADP crystal through the helium. As 
soon as the temperature of the crystal (or the internal chamber wall, depending on 
which temperature sensor is chosen as the control) approaches a chosen set point 
temperature, the heaters on the wall of the lower cylinder begin working to maintain 
that temperature through a temperature stabilization loop. A high-performance cryo-
genic temperature controller is used to monitor and control temperature within the 
internal chamber to better than 0.01°C resolution. Each of the two heaters mounted 
on the cryostat is controlled by a proportional-integral-derivative feedback loop. 
The feedback continually adjusts the output power to the heaters in order to keep 
the chosen temperature constant. The system has high thermal mass and reaches a 
target temperature of 200 K in about 36 h. 

This experiment is shown in Fig. 2. Some portion of the energy must be saved at 
the fundamental frequency (20% in an ideal-case plane wave without any type of 
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Figure 1
The cross section of the internal chamber, filled 
with helium (He), with the crystal (ADP) and liquid 
nitrogen tank (N2).
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Figure 2
Experiment: (a) The orientation of the crystal axes and polarizations. The angle (a) of the 1~ polarization was set using a half-wave plate for optimal conver-
sion, e: extraordinary, o: ordinary. (b) Setup. HWP: half-wave plate; SHG: second-harmonic generator; 4HG: fourth-harmonic generator; 5HG: fifth-harmonic 
generator; FS: fused-silica wedge.
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absorption and Fresnel reflections), untouched through the first two crystals to mix with the 4~ beam. We have chosen the cascade 
o1e1 $ e2:o2o2 $ e4:o1o4 $ e5, which allows the energy distribution between o and e waves to be changed by polarization 
rotation with a half-wave plate (HWP). The first frequency doubler was a Type-II deuterated potassium dihydrogen phosphate 
(DKDP) crystal (30 # 30 # 27 mm). A second frequency doubler, a Type-I KDP crystal (30 # 30 # 15.5 mm), was used to convert 
2~ $ 4~. 

An Nd:YLF laser was optimized to produce square pulses with a flattop, square beam profile (1053 nm, 1 to 2.8 ns, 12 # 
12 mm, #1.5 J, #5 Hz). The fused-silica prism separates the harmonic beams in space. The input and output beam energies were 
measured using identical cross-calibrated pyroelectric energy meters. All beam profiles were recorded.
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Accurate tuning of the experimental parameters allowed for total conversion efficiency from the fundamental to the fifth har-
monic, including surface losses and absorption, of 26% (Fig. 3). Temperature acceptance of 5HG is extremely narrow and less 
than 0.4 K (FWHM). Angular acceptance was measured at 200 K and is 8 mrad external (FWHM).

Figure 3
Fifth-harmonic efficiency and energy balance measured 
as a function of input-pulse energy and intensity.
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