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Introduction
In direct-drive inertial confinement fusion (ICF), an ensemble 
of laser pulses symmetrically illuminates a cryogenic capsule 
of deuterium–tritium fuel encased in a thin outer ablator.1,2 
The illumination heats the ablator, creating a pressure that 
drives inward fuel compression and outward mass ejection. The 
compression ultimately triggers thermonuclear burn, which, 
under ideal conditions, sustains itself through alpha-particle 
heating, i.e., ignition.3 The performance of the implosion, 
determined by the ablation pressure, relies critically on the 
efficient deposition of laser pulse energy in the ablator and 
preserving the compressibility of the fuel. The mass ejection, 
however, forms a low-density plasma corona, apt for the growth 
of laser–plasma instabilities. 

Laser–plasma instabilities inhibit energy deposition and 
reduce the compressibility by scattering light away from the 
ablator and by generating superthermal electrons, respec-
tively.4,5 In cross-beam energy transfer (CBET), for instance, a 
mutually driven ion-acoustic wave scatters incident light from 
one laser pulse into the outward path of an adjacent pulse.6,7 
The decay of a laser photon into two plasmons at the quarter-
critical surface, or two-plasmon decay (TPD), generates hot 
electrons directed toward the cryogenic fuel.8,9 These electrons 
preheat the fuel, increasing the ablation pressure required 
for compression.

Laser–plasma instabilities can be suppressed by using 
broadband pulses of light.10–16 Generally speaking, the 
bandwidth either detunes the interaction between waves, as 
in CBET,12,13 or incoherently drives many small instabili-
ties instead of a single coherent instability, as in TPD.14,16 
To this end, optical parametric amplifiers offer an excellent 
candidate for the next-generation ICF driver. These ampli-
fiers create high-power, broad-bandwidth infrared light that 
can be seeded with a variety of temporal formats.17 There is, 
however, a trade-off: The bandwidth is more than sufficient 
to suppress CBET and TPD but precludes high-efficiency 
conversion to the third harmonic, where laser–plasma interac-
tions tend to be weaker. Furthermore, infrared light does not 
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penetrate far enough into the plasma to undergo significant 
inverse bremsstrahlung absorption.1 As a result, operation 
at the first or second harmonic may reintroduce resonance 
absorption, an effect long suspected to be the shortcoming 
of early ICF experiments.18–21 

Resonance absorption occurs when a p-polarized electro-
magnetic (EM) wave, obliquely incident on a plasma density 
gradient, tunnels past its turning point and resonantly excites 
an electron plasma wave (EPW) at the critical surface.22–27 The 
subsequent wave–particle interaction converts the electrostatic 
energy of the EPW to electron kinetic energy in the form of a 
superthermal tail in the electron distribution function.24,28,29 

The superthermal electrons, while initially directed away from 
the ICF capsule, reflect from the electrostatic sheath formed 
by their space-charge separation with the ions and impinge on 
the cold fuel.28,30 As with TPD, the electrons preheat the fuel 
and increase the ablation pressure required for compression. 

Here we present simulations that show laser bandwidth 
fails to mitigate linear resonance absorption but suppresses 
nonlinearly enhanced resonance absorption. Said differently: 
any deleterious effect to ICF resulting from hot electrons 
produced during linear resonance absorption cannot be rem-
edied by bandwidth. In linear resonance absorption, in which 
the ponderomotive response of the ions is neglected, reduced 
absorption within one frequency range is offset by enhanced 
absorption in another. When the nonlinear ion response is 
included, the absorption evolves through two stages: In the 
first stage, the ponderomotive force of the resonantly excited 
EPW’s steepens the ion density profile, which increases or 
decreases the absorption depending on the incidence angle of 
an EM wave. In the second stage, the electromagnetic decay 
instability creates transverse density modulations along the 
critical surface. These modulations significantly enhance 
resonance absorption (up to 4# for the parameters of interest). 
Bandwidth suppresses the nonlinear modifications by reducing 
the ponderomotive force of the EPW’s and delocalizing the 
instability along the density gradient, returning the absorption 
to linear levels.
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The remainder of this article reviews the phenomenology 
behind linear resonance absorption and introduces the role of 
bandwidth, describes an extension of the Zakharov equations 
appropriate for modeling the linear and nonlinear resonance 
absorption of a broadband laser pulse, discusses the results 
of LPSE (laser-plasma simulation environment31) simula-
tions employing these equations, and presents the summary 
and conclusions.

Linear Resonance Absorption 
Figure 156.1 provides a schematic of linear resonance absorp-

tion. An incident EM wave with frequency ~0 propagates up a 
preformed density ramp. The density increases with the coordi-
nate x. The local EM dispersion relation determines the parallel 
wave number of the wave: k x

EM = ,cosc n x n
/

0
2

0
1 2

c-~ i` _j i9 C  
where n m e0 0

2 2
c ef ~=  is the critical density, me is the electron 

mass, e is the fundamental unit of charge, n0(x) is the preformed 
electron density, and i is the incidence angle at zero density. 
The parallel wave number decreases as the phase fronts of the 
wave encounter higher densities. At the turning point, n0(x) = 
nccos2i, the wave number vanishes and the EM wave splits into 
reflected and evanescent waves. 

The evanescent wave tunnels past the turning point and 
reaches the critical surface, n0(x) = nc. If the EM wave has 

a component of polarization parallel to the density gradi-
ent, it drives an oscillating charge separation by accelerating 
electrons back and forth across the gradient. The evanescent 
wave drives this oscillation at the critical surface, resonantly 
exciting an EPW. 

The resonantly excited EPW originates near its own 
turning point, n0(x) = nc, forcing it to propagate down the 
density ramp. From the local dispersion relation for the 
EPW, ,k n x n3 1v/ /

x T0
1 2

0
1 2EPW

c- -. ~` _j i8 B  where vT = 
k T m /1 2

b e e` j  is the electron thermal velocity and Te is 
the electron temperature. The phase velocity of the EPW, 

,kv p x0
EPW EPW~=  decreases as the phase fronts encounter 

lower densities, causing the EPW to be increasingly Landau 
damped: Near the critical surface, the EPW accelerates a small 
number of electrons far into the tail of the velocity distribu-
tion, ,v vp T

EPW &  and undergoes little damping. At lower 
densities, ,n x n2 30 c+^ h  the EPW accelerates electrons closer 
to the bulk of the distribution, ,3v vp T

EPW -.  and rapidly 
damps away. By the time the phase fronts of the EPW reach 

,n x n 20 c+_ i  the EM energy that was converted to electro-
static energy at the critical surface will be almost entirely 
converted to electron kinetic energy. 

The EPW accelerates electrons in the direction of its phase 
velocity, producing a flux of heated electrons directed down the 
density ramp. In an ICF implosion, the flux moves away from 
the capsule. However, the resulting electrostatic sheath28,30 

can accelerate the electrons back inward. This refluxing of 
electrons can preheat the capsule, inhibiting the compression 
and ultimately limiting the yield.

Assuming a linear density ramp n0 = (x/L)nc, several 
analytic theories and numerical calculations have shown 
that the fractional absorption, the energy absorbed divided 
by the incident EM energy, depends on a single parameter: 
q = (~0L/c)2/3sin2i (Ref. 22). The red curve in Fig. 156.2 
illustrates this dependence. The peak fractional absorption 
occurs for intermediate values of q + 0.5. Smaller values of 
q (smaller incidence angles) reduce the parallel component of 
the incident electric field, which weakens the excitation of the 
EPW. Larger values of q (larger incidence angles) extend the 
distance between the turning point and the critical surface. 
The evanescent wave must tunnel through a larger barrier, 
reducing its amplitude at the critical surface and weakening 
the excitation of the EPW. 

A broadband EM pulse incident on a plasma comprises 
multiple frequencies, each of which undergoes resonance 
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Figure 156.1
A schematic of resonance absorption. A p-polarized electromagnetic wave 
reflects at its turning point. The evanescent field of the electromagnetic wave 
resonantly excites an electron plasma wave that propagates down the density 
ramp. The electron plasma wave–particle interaction converts the electrostatic 
energy to electron kinetic energy.
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absorption independently. The fractional absorption for 
each frequency is determined solely by its value of q~ = 
(~ /~0)4/3(~L/c)2/3sin2i. The additional factor (~ /~0)4/3 
ensures each frequency experiences the same absolute density 
profile (i.e., the scale length L is defined in terms of the critical 
density of the frequency ~0). The presence of multiple frequen-
cies has little effect on the total fractional absorption. This is 
illustrated by the blue curve in Fig. 156.2. Defining the relative 
bandwidth with respect to the central frequency ~0 as D~/~0, 
the range of q~ values is Dq . 2(D~/~0)q—a weak function 
of the bandwidth. As will be seen, the presence of nonlinearity 
dramatically modifies the simple linear picture. 

Nonlinear Resonance Absorption Model
To model nonlinear resonance absorption, we employ an 

extension of the Zakharov system of equations.32 The tra-
ditional Zakharov system describes the nonlinear coupling 
of high- and low-frequency electrostatic fluctuations. A low-
frequency wave equation evolves ion density perturbations 
and has a natural mode at the ion-acoustic frequency; a high-
frequency equation propagates the electric field of electron 
plasma waves enveloped about a local plasma frequency. A 
model of nonlinear resonance absorption must also describe 
EM-wave propagation and mode conversion between EM waves 
and EPW’s. Near the critical surface, EM waves and EPW’s 
have similar frequencies so a single time-enveloped equation 
can be used to propagate both. 

We express the high-frequency electric field Eu  as an envelope 
modulated by a temporal carrier / , .,t eE E x1 2 c.ci t0= +- ~u _ _i i  
where ~0 is the central frequency of the incident EM wave. 
The envelope evolves according to 
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where e n m2 2
0p e~ f=  is the plasma frequency, n is the slowly 

varying electron density, and oei is the electron–ion collision 
frequency as defined in Ref. 33. The first term on the right-
hand side of Eq. (1) results from an electron–ion Boltzmann 
equilibrium in which a quasi-static electric field balances an 
inhomogeneous electron pressure. The second term captures 
the loss of electromagnetic and electrostatic energy caused by 
inverse bremsstrahlung heating. The function Q accounts for 
the loss of electrostatic energy through Landau damping; in 
wave-number space ,i kQ k k E0

2
ld- $~ o= -t t t` j  where the carat 

denotes a quantity Fourier transformed with respect to space and 
kld ldo o=t t _ i is the Landau damping rate calculated as in Ref. 34. 

The high-frequency electron density perturbations associated 
with the field are given by Poisson’s equation .n q Eh 0 $df= ` j

The slowly evolving electron density contains two contribu-
tions: an inhomogeneous, equilibrium background, represent-
ing the preformed plasma, and the low-frequency density fluc-
tuation n = n0(x) + nl. The low-frequency density perturbation 
corresponds to ion motion. On this time scale, the electrons 
respond nearly instantaneously, maintaining quasi-neutrality. 
The ponderomotive force of the mixed electromagnetic/static 
waves drives the low-frequency density fluctuations: 
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where u is the background flow velocity, c ZT T m3
/1 2

s e i i+` j9 C  
is the sound speed, Z is the ion charge state, Ti is the ion tem-
perature, mi is the ion mass, % denotes a convolution, and kiot _ i is 
the Landau damping of ion-acoustic waves found by solving for 
the low-frequency root of the kinetic plasma dispersion relation.

Equations (1) and (2) compose the extended Zakharov system 
of equations and, in addition to resonance absorption, include 
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Figure 156.2
Fractional absorption of laser pulse energy as a function of q for a monochro-
matic wave (red) and a broadband pulse with a relative bandwidth D~/~0 = 
0.1 (blue). For the broadband pulse, the dots were found by averaging the 
absorption over 4 ps. The blue swath represents the 99% confidence interval 
calculated from the standard error in the mean. BW: bandwidth.
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effects such as Brillouin scattering, filamentation, Langmuir 
decay,35 the 2-D radiative decay instability,36 profile steepen-
ing, and electromagnetic decay instabilities.37 As shown below, 
the latter two of these play a prominent role in determining the 
fraction of laser pulse energy absorbed by the plasma. One can 
readily verify that taking the curl of Eq. (1) produces an EM-
wave equation with an effective source term that converts EPW’s 
into EM waves: .i E E2 t0

2
p# #d d2 +~ ~_ _i i  Similarly one 

can take the divergence of Eq. (1) to find an electrostatic wave 
equation with an effective source term that converts EM waves to 
EPW’s: .i E E2 t0

2
p$ $d d2 +~ ~_ _i i  By assuming a curl-free 

field, one recovers the traditional Zakharov system. 

Simulations
We have implemented the extended Zakharov system of 

equations [Eqs. (1) and (2)] into LPSE.31 LPSE is a compu-
tational framework for studying laser–plasma interactions 
relevant to ICF with features including (1) nonparaxial wave 
propagation, (2) injection of arbitrary and realistic laser pulses, 
and (3) shared and distributed memory parallelization. 

The LPSE simulations presented here modeled a plasma 
during the first picket of a direct-drive, CH capsule implosion 
on the OMEGA laser38 (see Table 156.I for parameters). The 
background plasma had a linear density ramp and a constant 
flow from high to low density. Specifically n0 = (x/L)nc and 

/ .cu x1 2 s-= t_ i  In principle, the flow velocity would increase 
as the density decreased. However, the dynamics of interest 
occur close enough to the critical surface that the flow can be 
approximated as constant. 

In each simulation, a p-polarized EM pulse in the form of a 
single speckle was launched up the density ramp at an angle i 

with respect to the xt  direction (see Fig. 156.1 for a schematic). 
Bandwidth was applied in the form of chaotic light. Each pulse 
was partially coherent with a Lorentzian power spectrum, 
p(d~) = r–1[(d~)2 + (D~/2)2]–1 (D~/2), where D~ is the full 
width at half maximum bandwidth and d~ = ~–~0 is the shift 
away from the central frequency. The pulses were injected 
slightly inside the minimum x boundary with a profile

 , ,y t y p eE E
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where ky, is the wave number in the yt direction accounting for 
the frequency shift d~



. The function E0(y) includes a sixth-
order super-Gaussian profile perpendicular to the propagation 
direction with e–1 spot size w and an amplitude that ensures the 
correct time-averaged intensity. N = 100 frequencies d~



 and 
phases z



 were selected randomly from uniform distributions 
on the intervals [–4D~, 4D~] and [0, 2r], respectively. The 
angle of incidence i was varied from 0° to 28° (i.e., q values 
ranging from 0 to 3.4). 

The simulation domain spanned 23 # 64.4 nm and was 
divided into 1100 # 3080 cells with absorbing boundaries. 
The cell size was chosen to resolve the fine spatial structure 
of the low-frequency density fluctuations and to ensure con-
vergence. The time step was chosen to satisfy the linear sta-
bility requirement of the numerical implementation of Eq. (1): 

.t x c< 0
2 2~D D` j  

In the following subsections, we present two cases: linear 
and nonlinear resonance absorption. Linear resonance absorp-
tion was simulated by excluding the low-frequency density per-
turbation nl from the density n when solving Eq. (1). Nonlinear 
resonance absorption simulations included the full density per-
turbation: n0 + nl. While the simulations considered the specific 
case of a laser pulse with a central wavelength m = 2rc/~0 = 
1054 nm, the results can be scaled to other wavelengths using 
the normalizations presented in the Appendix (p. 175). 

1. Linear Resonance Absorption Results
The red curve in Fig. 156.2 displays the linear fractional 

absorption fA from LPSE for a monochromatic wave as a 
function of q. The absorption compares well to previous cal-
culations23 with two caveats: (1) LPSE includes inverse brems-
strahlung absorption, which causes a floor in the fractional 
absorption of +0.06 at all angles; (2) LPSE models an EM pulse 
with a finite spot size. At normal incidence, such a pulse has an 
electric-field component parallel to the density gradient and, in 

Table 156.I:  Parameters for simulations.

Plasma Parameters Value

ZT Te i 3.1

Zm me i 3 # 10–4

L (nm) 10

u (cs) 0.5

kci sot ` j 0.17

Pulse Parameters Value

m (nm) 1.054

w (nm) 6
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contrast to a plane wave, will undergo resonance absorption. 
This component of the electric field enhances the resonance 
absorption at small incidence angles, but it is overwhelmed by 
the large projection of the primary polarization component 
onto the density gradient at large angles. The effect is readily 
observable in Fig. 156.1 as the enhancement in the fractional 
absorption over the collisional floor at a 0° angle of incidence. 

Bandwidth has almost no effect on linear resonance absorp-
tion. The blue curve in Fig. 156.2 displays the fractional absorp-
tion averaged over 4 ps for a pulse with a relative bandwidth 
of D~/~0 = 0.1. The blue swath indicates the 99% confidence 
interval calculated from the standard error in the mean. To 
within the confidence interval, the red and blue curves are 
nearly identical. 

The insensitivity of linear resonance absorption to band-
width can be demonstrated with a simple analytical model. 
Using heuristic arguments, Kruer derived the following 
expression for the fractional absorption of an EM wave with 
frequency ~ (Ref. 4): 

 . .expf q q2 6
3
4 /3 2

A --~ ~ ~
u ^ dh n  (4)

While Eq. (4) overpredicts the absorption,4 its analytic form 
facilitates our demonstration of the salient physics. Integrating 
Eq. (4) over the power spectrum of the laser pulse provides the 
total fractional absorption .f p f dT A~ ~ ~=u u^ ^h h#  To second 
order in the frequency shift, one finds

 ,f f q q1 1 12 8/
T 0

1 2 3

0

2

A -. ~ ~
~D+ +u u ` a ej k o> H  (5)

where q = (~0L/c)2/3sin2i. The second term in Eq. (5) repre-
sents the correction to the fractional absorption caused by the 
finite bandwidth of the pulse. For a broad relative bandwidth 
of D~/~0 = 0.1, the correction is only 2% near peak absorp-
tion q = 0.5. For smaller q, the reduced absorption at lower 
frequencies almost entirely compensates for the increased 
absorption at higher frequencies; the reverse compensation 
occurs for larger q. A large relative bandwidth samples only a 
small range of the fractional absorption curve, leaving the total 
absorption unchanged. 

2. Nonlinear Resonance Absorption Results
The ponderomotive force of the EM wave and resonantly 

excited EPW drive a low-frequency density perturbation that 
nonlinearly modifies the conversion of EM waves into EPW’s: 

2i~02t(d$E) + (dnl)$E. The result is a dynamic fractional 
absorption that evolves through multiple stages. Figure 156.3 
displays the time history of the fractional absorption for a 
monochromatic wave. The black line shows the linear absorp-
tion for reference. At the lower intensity (2 # 1013 W/cm2), the 
pulse undergoes reduced and enhanced absorption compared 
to the linear absorption for q = 0.5 (i = 10°) and q = 1.8 (i = 
20°), respectively. At the higher intensity (6 # 1013 W/cm2), the 
absorption evolves through two stages: Early in time (stage 1), 
the absorption exhibits behavior similar to that observed at 
lower intensity—a reduction and enhancement for q = 0.5 and 
q = 1.8, respectively. Later in time (stage 2), the absorption 
increases well above the linear levels for both values of q. 

The modifications to the absorption in stage 1 result from 
profile steepening.25,39 The ponderomotive pressure of the reso-
nantly excited EPW pushes plasma along the density gradient 
toward larger density. This is illustrated in Fig. 156.4(a), which 
shows the low-frequency density perturbation during stage 1 for 
the 6 # 1013 W/cm2 pulse at q = 0.5. The low-frequency density 
increases from left to right across the critical surface (x = 0). 
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Figure 156.3
Fractional absorption as a function of time for a monochromatic wave under-
going nonlinear resonance absorption. The lower intensity (2 # 1013 W/cm2) 
is below threshold for the electromagnetic decay instability, while the higher 
intensity (6 # 1013 W/cm2) is above the threshold. (a) The value q = 0.5 was 
chosen to coincide with the peak in the linear fractional absorption. (b) A larger 
incidence angle q = 1.8 is shown. For reference, the black line delineates the 
linear fractional absorption at the two q values. 
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This shortens the scale length, which stretches the absorption 
curve to larger values of q relative to the linear result. Specifi-
cally, ,f q f q L L /2 3

A A eff"_ ^i h9 C  where Leff < L is an effective, 
steepened scale length that, in general, depends on q and the 
incident intensity. The stretching is readily apparent when com-
paring the linear and stage 1 absorption curves in Fig. 156.5. 

The enhanced absorption in stage 2 results from small-
scale, transverse fluctuations in the low-frequency density that 
develop near the critical surface. These fluctuations, observable 
in Fig. 156.4(b), increase the projection of the density gradient 
onto the incident polarization, augmenting the mode conversion 
from the EM wave to the EPW. As shown by the green curve in 
Fig. 156.5, this enhances the fractional absorption well above 
linear levels over a range of incidence angles. For q < 1.8, the 
modulations increase the absorption by at least a factor of 
+1.5#, with a maximum increase of 4# at normal incidence. 

The transverse density fluctuations are fueled by the EM-
decay instability (EDI). In EDI, an EM wave drives a paramet-
ric resonance and decays into an EPW and an ion-acoustic wave 
with nearly equal and opposite wave numbers.37 The electric 
field of the EM wave drives the instability by beating with 
the electric field of the EPW in Eq. (2) and the low-frequency 
density perturbation in Eq. (1). The drive (and therefore the 
instability growth) is maximized when the electric fields of 
all three waves are aligned. Accordingly, the EPW and ion-
acoustic wave, being electrostatic, have their wave vectors 
aligned with the polarization of the EM wave. That is, the 

Figure 156.4
Spatial profiles of the [(a),(b)] low- and [(c),(d)] high-
frequency density perturbations occurring during 
the absorption of a monochromatic EM wave with 
an incident intensity of 6 # 1013 W/cm2 and q = 
0.5. The unperturbed critical surface is at x = 0. 
[(a),(c)] and [(b),(d)] show the profiles in the first and 
second absorption stages, respectively. 
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Figure 156.5
Fractional absorption as a function of q during the first (black) and second 
(green) stages of nonlinear r absorption for a monochromatic wave with an 
incident intensity of 6 # 1013 W/cm2. The fractional absorption returns to 
near-linear levels (red) when the pulse has a relative bandwidth of D~/~0 = 
0.02 (blue). The blue dots represent the mean of the time-averaged absorption 
from three simulations. The blue swath represents the standard error in the 
mean of the three simulations. 

instability drives fluctuations transverse to the propagation 
direction of the incident EM wave. To satisfy phase matching, 
the resonance must occur close to the critical surface: the low 
frequency of the ion-acoustic wave forces the frequencies of 
the EPW and EM wave to be nearly equal. 
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Consistent with EDI, Figs. 156.4(b) and 156.4(d) show that 
the transverse fluctuations in the low- and high-frequency densi-
ties originate from the same location near the critical surface 
(x = 0) and have a similar spatial period. Figure 156.6 shows the 
spatial spectra of the low- and high-frequency density fluctua-
tions. The white dashed circles mark the Landau cutoff, above 
which EPW’s rapidly decay because of Landau damping, kmd > 
0.25 with .k T n e

/
0

2 1 2
d b e cm f= ` j  The transverse fluctuations 

develop at the onset of stage 2 (t + 3.5 ps) and are nearly mir-
rored in the low- and high-frequency densities. The fluctuations 
in the EPW start near their turning point kx + 0 and propagate 
down the density ramp, leading to the streaking from small to 
large, negative kx in Fig. 156.6(d). By the time the fluctuations 
reach kmd = 0.25, they have almost completely damped away. We 
note that nl and nh are real and complex quantities, respectively, 
and therefore produce symmetric and asymmetric spectra. 

The occurrence of EDI also explains the intensity threshold 
for stage 2 observed in Figs. 156.3 and 156.5. Figure 156.5, in 
particular, shows that stage 2 no longer occurs for q > 1.8. At 
larger incidence angles, the component of the EM polarization 
tangential to the critical surface is smaller, which weakens the 
drive for the instability, dropping it below threshold. Larger 
incidence angles also align the wave vectors of the electrostatic 
waves with the density gradient, limiting the interaction to a 
smaller region of space. Note that the instability described 
here is distinct from that described in Ref. 36 in two ways: 
(1) it is not radiative and (2) no compression of the pump wave 
is observed.

In principle, the EDI process itself could also increase 
absorption: the driven EPW’s deplete the laser pulse of energy 
and subsequently Landau damp. This contribution to the 
absorption was found to be negligible. Linear simulations were 
initialized with the stage 2 density profiles from nonlinear 
simulations. The resulting fractional absorption was nearly 
identical to that found in the nonlinear simulations. This 
verified that the enhanced absorption results from augmented 
mode conversion at the modulated critical surface and not the 
EDI-generated EPW’s.

In addition to the EDI, the spatial spectra in Fig. 156.6 
exhibit several other phenomena. Linear resonance absorption 
manifests as the narrow streak in the high-frequency density 
[Fig. 156.6(c)] that starts at kx + 0 and extends to negative kx. 
The bright, small kx features in the low-frequency density 
[Figs. 156.6(a) and 156.6(b)] correspond to profile steepening. 
The Langmuir-decay instability, in which a pump EPW decays 
into a frequency-downshifted EPW and an ion-acoustic wave, 
also appears.35 The resonantly excited EPW at kx . –2.5k0 acts 
as a pump for EPW’s at kx . 2.5k0 and forward-propagating 
ion-acoustic waves at kx . –5k0—a backscattered EPW con-
figuration consistent with maximum instability growth.

3. Effect of Bandwidth 
Bandwidth suppresses both profile steepening and the 

formation of transverse fluctuations in the low-frequency den-
sity. The blue curve in Fig. 156.5 demonstrates that a relative 
bandwidth of D~/~0 > 0.02 is sufficient to return the fractional 
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Spatial spectra of the [(a),(b)] high- and [(c),(d)] low-
frequency density perturbations corresponding to the 
profiles displayed in Fig. 156.4. The white dashed circles 
indicate the Landau cutoff. 
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absorption to near-linear levels. The value of D~/~0 = 0.02 was 
determined by performing the scaling over relative bandwidth 
shown in Fig. 156.7 for q = 0.5 and q = 1.8. 
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Figure 156.7
Fractional absorption as a function of D~/~0 (shown as a percentage) for q = 
0.5 (blue) and q = 1.8 (red). The dots represent the mean of the time-averaged 
absorption from three simulations. The swath represents the standard error 
in the mean of the three simulations.

Bandwidth suppresses profile steepening by reducing the 
ponderomotive force of the resonantly excited EPW’s [right-
hand side of Eq. (2)]. Each frequency within the EM pulse has 
a different critical surface where it resonantly excites an EPW 
with the corresponding frequency. This broadens the region 
where the EPW’s originate and reduces their temporal coher-
ence, both of which lower the electrostatic energy density. 
The spread in critical-surface locations is Dxc = (D~/~0)L. 
For D~/~0 = 0.2 and L = 10 nm, Dxc = 200 nm—a significant 
fraction of the steepened region as evident in Fig. 156.4(a). The 
resonantly excited EPW’s have a bandwidth equal to that of 
the EM pulse. When their coherence time tc + 1/D~ is shorter 
than the response time of the ions, tl ~ 1/(k0cs)—that is, when 

c c 10 s &~ ~D` `j j —they drive the ions incoherently with a 
substantially lower ponderomotive force than a monochromatic 
wave. Said differently, for sufficient bandwidth the ions are 
relatively immune to the rapidly varying interference terms in 
the energy density of the EPW’s. 

Bandwidth suppresses the transverse fluctuations by spa-
tially delocalizing the electromagnetic decay instability along 
the density gradient. The spatial delocalization results from 
two effects: First, each frequency within the EM pulse reflects 
from a different surface, which lowers the amplitude available 

to fuel the decay instability. Near the turning point, the profile 
of a monochromatic EM wave can be approximated as an Airy 
function with an effective scale length LA + 2(c2L/~2)1/3. The 
profile of a broadband EM pulse is a superposition of many 
such functions, one for each frequency component. The fre-
quency dependence of the turning point, xt = (~/~0)2Lcos2i, 
shifts the relative location of the functions over a range Dxt . 
2(D~/~0)Lcos2i. When Dxt + LA, the shifted Airy functions, 
when superposed, have a substantially lower amplitude than a 
monochromatic wave. As an example, Dxt + 350 nm and LA . 
1.3 nm for D~/~0 = 0.02 and L = 10 nm. One can show that 
this reduces the peak time-averaged intensity by a factor of +2.

Second, and more importantly, each frequency within the 
EM pulse has its parametric resonance for the EDI at a differ-
ent point along the density ramp. The bandwidth of the pulse 
defines a region of space where the resonance condition for each 
frequency is satisfied, i.e., an interaction region. At each point 
within the interaction region, the instability will be driven on 
resonance by one frequency and off resonance by every other 
frequency (with a detuning determined by the density scale 
length and distance from that frequency’s resonant point). 
However, the effective amplitude driving the instability at each 
location, comprised of the resonant and off-resonant contribu-
tions, is considerably lower than the peak amplitude. Compare, 
for instance, to a monochromatic wave, which resonantly drives 
the instability with its peak amplitude at a single point. As a 
transverse instability, the increased extent of the interaction 
region resulting from bandwidth does not compensate the 
reduced, effective amplitude at each location (cf., Ref. 40). 

This second form of suppression is effective when the spread 
in critical surface locations is comparable to the spatial extent 
of the monochromatic instability, i.e., Dxc + Dx0. From the 
gain bandwidth, the extent of the monochromatic instability is 
given by ,x L20 0EDI+ c ~D ` j  where cEDI is the homogeneous 
growth rate. At normal incidence,

 / ,Zm m c k c c1 4 v
/ /

y
1 2 2

0
1 2

EDI e i s oscc ~= _ ` b `i j l j  

where eE mv 0 0osc e~=  and E0 is the amplitude of the elec-
tromagnetic wave.37 For D~/~0 = 0.02 and the parameters 
considered here, ,x x 2 20c EDI +~ cD D D=  consistent with 
the simulations. 

Note that for small relative bandwidths of D~/~0 . 0.001, 
Fig. 156.7 exhibits an enhancement in the fractional absorp-
tion. Near threshold, small bandwidths introduce intensity 
fluctuations, which can increase the exponentiation of the 
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instability, but do not provide a degree of incoherence sufficient 
for mitigation. 

Summary and Conclusions
We have examined the effect of bandwidth on resonance 

absorption. In traditional, linear resonance absorption, band-
width has no effect on the fractional absorption. For small 
angles of incidence, the suppressed absorption at lower fre-
quencies is almost entirely offset by the enhanced absorption 
at higher frequencies. The reverse compensation occurs for 
large angles of incidence. 

Bandwidth can, however, modify absorption when a laser 
pulse and resonantly excited EPW nonlinearly modify the 
ion density. At early times, the ponderomotive force of the 
resonantly excited EPW steepens the density profile, leading 
to a shorter scale length. The steepening can either enhance 
or reduce the absorption depending on the incidence angle of 
the EM wave. Later in time, the nonlinear coupling between 
the EM wave, EPW, and low-frequency density drives an 
electromagnetic-decay instability that significantly enhances 
the fractional absorption of laser light (up to 4#). The instability 
modulates the critical surface, which increases the projection 
of the density gradient onto the polarization of the EM wave 
and therefore augments the conversion of EM energy to elec-
trostatic energy.

Bandwidth disrupts these processes by (1) spreading the 
region and frequencies over which EPW’s are resonantly 
excited and (2) spatially delocalizing the electromagnetic-decay 
instability along the density gradient. The spatial delocalization 
results from two effects. First, each frequency component of the 
incident EM wave has a different turning point, which reduces 
the peak amplitude. Second, each frequency resonantly drives 
the instability at a single density, while elsewhere contributing 
to a weakened, detuned drive. The effective amplitude at each 
point, comprising the resonant and detuned contributions, is 
considerably less than the peak amplitude, which drives the 
monochromatic instability. For parameters relevant to the ini-
tial picket in a direct-drive implosion on the OMEGA laser, a 
relative bandwidth of D~/~0 > 0.02 was sufficient to suppress 
the enhanced absorption. 

These results will inform the development of the next-
generation ICF driver, which will require a large bandwidth to 
suppress instabilities such as cross-beam energy transfer, two-
plasmon decay, and stimulated Raman scattering. To this end, 
optical parametric amplifiers present an excellent candidate. 
The amplifiers provide enormous bandwidth (D~/~0 + 0.1) 

at a wavelength of +1 nm. While the light can be frequency 
doubled, the efficiency of frequency tripling, resulting from the 
large bandwidth, is prohibitively low with the current technol-
ogy. In an ICF implosion driven at a wavelength of 1 nm or 
0.5 nm, resonance absorption will play a greater role in the 
laser–target coupling; such implosions will still be susceptible 
to hot electrons generated by linear resonance absorption. 
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Appendix: Scaling to Other Frequencies
With a judicious choice of variable normalizations, a solu-

tion of Eqs. (1) and (2) for one set of physical parameters can 
be extended to a wide range of parameters. We normalize time, 
space, electric field, and density by 3g/2~0, ,3 2v/

T
1 2

0g ~  
,m e3 4 v/

T
1 2

0eh g ~_ `i j  and ,n4 3c g  respectively, where 
m Zmi eg h=  and T ZT1 3 i eh = + —the usual normaliza-

tions for the Zakharov equations41 with the plasma frequency 
replaced by the laser frequency and the background density set 
to the critical density. Equations (1) and (2) become
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where the use of the normalized, dimensionless variables 
is implied, ,c c 3vT T

2 2 2=  and / .kQ k k E1 2 2
ld- $o= -t t t_ `i j  

Conveniently, the laser frequency does not appear in Eqs. (A1) 
and (A2). Therefore, given a solution at one frequency (or 
wavelength), one can find a solution at any other frequency by 
appropriately scaling time, space, electric field, and density. 
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