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In diverse fields of plasma physics including astrophysics, iner-
tial confinement fusion, and magnetohydrodynamics, classical 
thermal transport1,2 provides the foundation for calculating 
heat flux.3–7 The classical theories of thermal transport by 
Spitzer–Härm (SH)1 and Braginskii2 specify the heat flux by a 
local expression in terms of the thermal conductivity l and the 
electron temperature gradient (e.g., qSH = ldTe). This theory 
breaks down in the presence of large temperature gradients,8–11 
turbulence,12 or return current instabilities:13–16 classical 
theory does not include nonlocal effects where energetic elec-
trons travel distances comparable with the temperature scale 
length before colliding.

Local thermal-transport theories1,2 follow from a pertur-
bative solution of a kinetic equation in terms of the collision 
parameter ,L 1Tei %m  where mei is the electron–ion (e–i) 
mean free path and LT = Kd ln(Te)K−1 is the scale length of the 
temperature gradient. Nonlocal theories overcome limitations 
of classical theory by accounting for the range of electron–ion 
mean free paths associated with different electron velocities. 
By extending closure relations for hydrodynamic models into 
the kinetic regime of weak collisions, these theories17–24 have 
established the limits of classical transport .L 10T

2
ei +m

-
a k  

In laser-produced plasmas, classical theory predicts 
unphysically large thermal transport. Hydrodynamic simula-
tions of these plasmas require an ad hoc limiter on the heat 
flux to match experimental observables. Historically these 
limiters were set by kinetic simulations,25–27 integrated 
experiments,10,11,28,29 or more-focused Thomson-scattering 
measurements of the local plasma conditions (i.e., electron 
temperature and density).8,13,30,31 More recently, the nonlocal 
Schurtz–Nicolaï–Busquet (SNB) model23 was introduced as a 
computationally efficient method for calculating the nonlocal 
heat flux in large-scale multidimensional hydrodynamic simu-
lations. Experiments that attempt to measure nonlocal transport 
have been limited, however, to indirect observations.8,24,30–32 

In this article, we present the first direct measurement of 
nonlocal heat flux. A novel implementation of collective Thom-

Observation of Nonlocal Heat Flux Using Thomson Scattering

son scattering measured the heat flux by probing the relative 
spectral amplitudes of electron plasma waves (Fig. 155.1). In 
addition to the heat flux, the plasma-wave spectrum provided 
a measurement of the plasma temperature and density profiles. 
The profiles were used to calculate the classical SH heat flux, 
which was in good agreement with the measured heat flux 
far from the target, where the temperature scale length was 
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Figure 155.1
(a) Calculated Thomson-scattering (TS) features (red curves, right axis) from 
electron plasma waves [Eq. (1)] are shown (vz = ~/k) using a Maxwellian (solid 
blue curve, left axis) electron distribution function and the non-Maxwellian 
(dotted blue curve) distribution that accounts for classical Spitzer–Härm 
(SH) heat flux . , % .L q q2 2 10 3T

3
ei FS#m = =-` j  (b) For a fixed normal-

ized phase velocity, the ratio (R) of the peak scattered power of the up- and 
downshifted features are shown for calculations that use classical SH (solid 
curve, top axis) and nonlocal (dashed curve, bottom axis) distribution func-
tions over a range of heat flux normalized to the free-streaming flux, qFS = 
neTevte. (c) Schematic of the setup.



ObservatiOn Of nOnlOcal Heat flux using tHOmsOn scattering

LLE Review, Volume 155126

longer than the electron–ion mean free path of heat-carrying 
electrons .L 10T

3
ei +m

-
a k  For steeper gradients, the mea-

sured heat flux was up to a factor of 2 smaller than the classical 
values as a result of nonlocal transport. For the most nonlocal 
conditions, the SNB model predicted an inhibited heat flux 
compared with the classical values, but it still overestimated 
the measured heat flux by +40%. In the region where classical 
SH theory agrees with the measured heat flux, the SNB model 
overestimates the flux.

Figure 155.1(a) illustrates the effect of heat flux on the col-
lective Thomson-scattering spectrum. Two scattering spectra, 
calculated with and without SH heat flux, demonstrate the sen-
sitivity of the Thomson-scattering spectrum to the shape of the 
electron distribution function. The SH distribution function was 
derived from the lowest-order terms in the perturbative solution 
of the kinetic equation, ,cosf f fv v v0SH

M
i= = +_ ] ]i g g  where 

 / ,f L fv v v v2 9 4 2v vT
4 2

0ei te te
2 M-m r=_ ` b _i j l i  

T mvte e e=  is the electron thermal velocity, f0
M is a Max-

wellian velocity distribution function, and i is the angle 
between electron velocity and the temperature gradient. The 
Thomson-scattering spectra were calculated in the high-
frequency limit where the ion dynamics can be ignored:33 
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where f(k,~) is the longitudinal plasma dielectric function 
and the probed wave vector (frequency) is the difference 
between the incident and scattered wave vectors (frequen-
cies), k = ki− ks(~ = ~i−~s). The 1-D distribution function 
f ve
u _ i is determined by integrating the full distribution function 
over velocities perpendicular to the probed wave vector. At 
the Langmuir wave resonance defined by f(k,~) = 0, ~(k) = 
!~L(k) + icL(k), where, in general, the Landau damping rate 
cL is proportional to 

 f v ke v L
2 2

~=
u  

and ~L is approximately the resonant frequency for Langmuir 
fluctuations. The collisionless approximation of S(k,~) in 
Eq. (1) is valid for these experiments beceuase the scale of the 
probed waves (+1/k) is small compared to the electron–ion 
mean free path such that .k 1ei&m  

Figure 155.1(b) shows the sensitivity of the amplitude ratio 
of the up- and downshifted (red- and blue-shifted, respectively) 
scattered peaks to heat flux, where SH or nonlocal distribution 
functions were used to calculate the Thomson-scattering spec-
trum. It is evident from Eq. (1) that heat flux has two effects 
on the scattered power near the resonance: (1) the amplitude 
depends on the number of electrons at the resonance f ke L~

u _ i9 C 
and (2) the width is given by the slope of the electron distribu-
tion function at the resonance 

 .f v ke v L
2 2

~=
u  

Therefore, to maximize the effect of heat flux on the scattered 
power, the scattering geometry was chosen to probe Langmuir 
waves propagating along the target normal where the tempera-
ture is largest, k < –dTe, and with phase velocities near the 
region of the electron distribution function with the most heat-
carrying electrons, . .k 3 4vL teL~  For this geometry, it was 
demonstrated in theory34 that the Langmuir fluctuations that 
contribute to the red-shifted peak in the Thomson-scattering 
spectrum experience increased Landau damping, while the 
oppositely propagating Langmuir waves that contribute to 
blue-shifted peak become less damped.

The experiment was conducted on LLE’s OMEGA laser35 
and used six m3~ = 351-nm beams to produce a blowoff plasma 
from a planar aluminum target. Each beam had 250 J in a 2-ns 
flattop pulse. Phase plates36 were used to set the profile of the 
laser spot at the target plane to be a high-order super-Gaussian 
(n = 4.6) with a full width at half maximum of 560 nm. The 
six beams with the smallest angle of incidence (8°, 29°, 
32°, 33°, 35°, and 40°) were chosen to produce the plasma 
[Fig. 155.1(c)]. The Thomson-scattering diagnostic37 consisted 
of a 40-J, 2-ns-long, m2~ = 526.5-nm probe beam with a best-
focus diameter of +50 nm (Ref. 38). The light scattered from a 
50-nm # 50-nm # 50-nm volume was imaged through a 1/3-m 
spectrometer onto a streak camera. The spectral dispersion was 
0.411 nm/pixel!0.4%. The system had spectral and temporal 
resolutions of 0.5 nm!5% and 20 ps!0.5%, respectively. The 
scattering angle was 60°. The scattering volume was set to five 
different locations along the target normal ranging from 1.1 mm 
to 1.5 mm from the initial target surface. To account for the 
bremsstrahlung radiation collected by the Thomson-scattering 
system, a background was established at each location by turn-
ing off the Thomson-scattering probe beam and was subtracted 
from the corresponding spectrum.

Figure 155.2 shows the collective Thomson-scattering 
spectra measured at each of the probed locations. The data were 
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fit with a fully kinetic Thomson-scattered power spectrum33 that 
incorporates a non-Maxwellian electron distribution function 
to provide a measure of the heat flux, electron temperature, and 
density.34 To a good approximation, the relative amplitudes 
of the electron plasma wave features are given by heat flux, 
the frequency of the electron plasma wave feature by the 
density, and the width of the plasma wave feature by the 
electron temperature.

The insets in Fig. 155.2 compare scattered spectra calcu-
lated using non-Maxwellian electron distribution functions, 
consistent with thermal transport, with Maxwellian electron 
distribution functions. The excellent quality of the fits over the 
complete spectrum indicates the high accuracy of the shape of 
the distribution functions used. The significant deviation from 
the measured spectra that occurs when not accounting for the 
effects of heat flux (i.e., Maxwellian distribution functions) 
shows the sensitivity of the measurement. The non-Max-
wellian distribution functions were calculated from a series of  
Fokker–Planck simulations39 with varying boundary condi-
tions but with the electron temperature and density profiles 
equal to the measured values.

Figure 155.3 shows the resulting heat-flux measurements 
at the five probed locations obtained by integrating the elec-
tron distribution functions used to fit the Thomson-scattering 
spectrum / .m f dq v v1 2 v v2 3

TS e= _ _i i9 C#  The measured heat 
flux is compared to classical heat flux values (qSH = –ldTe) 
determined by calculating the Spitzer thermal conductiv-

ity and the local temperature gradient from the measured 
plasma profiles (Fig. 155.4). Excellent agreement between the 
classical and measured heat flux is observed for the location 
farthest from the target surface, but for locations closer to the 
target surface, the measured flux is smaller than the classical 
values. This difference highlights the nonlocal nature of the 
thermal transport.
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Figure 155.2
The measured collective Thomson-scattering spectra (top row) and the corresponding spectral profiles (blue dots) at 1.5 ns (bottom row). The data were fit (red) 
with Eq. (1) using non-Maxwellian electron distribution functions to measure heat flux. (Insets) The red-shifted features are shown with calculations (black) 
that used the plasma conditions from the fit but a Maxwellian electron distribution function. These spectra recover the location of the scattering features but 
fail to match their amplitudes. At 1.5 mm, the spectrum was fit (dashed curve) with calculations that use a distribution function consistent with classical SH 
theory. All spectra are normalized to the peak scattered power.
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Figure 155.3
The heat flux (red circles) measured along the target normal is compared 
with classical heat flux (SH) calculations (blue triangles) and heat-flux values 
obtained from the simulations using the Schurtz–Nicolaï–Busquet (SNB) 
model (black diamonds). Both the simulations and calculations were initi-
ated with the measured electron temperatures and densities. For reference, 

. ,L 1 4 10 2
Tei #m = -  1.4 # 10−2, 1.3 # 10−2, 1.0 # 10−2, and 7 # 10−3 at 1.1 mm, 

1.2 mm, 1.3 mm, 1.4 mm, and 1.5 mm, respectively.
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Figure 155.4 presents the measured electron temperature 
and density profiles determined from fitting the blue-shifted 
features with the Thomson-scattering power spectrum, assum-
ing Maxwellian electron distribution functions (Fig. 155.2). 
The electron temperature decreased from 1.27!0.04 keV to 
1.12!0.04 keV over 400 nm. The electron temperature gradient 
at each measurement location was determined by fitting a fifth-
order polynomial to the measurements. The uncertainty in the 
temperature gradient was calculated by varying the data within 
the relative error bars, which were used to calculate the errors 
in the classical heat flux (Fig. 155.3). Over this same distance, 
the electron density dropped from 8.36!0.04 # 1019 cm−3 
to 2.63!0.01 # 1019 cm−3. The high signal-to-noise ratio in 
the measured spectra resulted in excellent |2 statistical fits, 
which determined the 1v statistical relative error bars shown 
in Fig. 155.4. The absolute errors in the electron temperature 
and density were dominated by uncertainties in the spectral 
dispersion and resolution. Adding these errors in quadrature 
resulted in a 2% and 3% absolute error in the density and tem-
perature, respectively.

For the measurement farthest from the target surface 
(1.5 mm), the Thomson-scattering spectrum calculated using 
the electron distribution function determined by classical SH 
theory, where ,L 7 10T

3
ei #m = -  was in good agreement 

(Fig. 155.2). This is consistent with the agreement in the mea-
sured heat flux at this location presented in Fig. 155.3. Although 
the classical SH distribution function allows the amplitudes of 
the spectral peaks to be reproduced, the fit shows a discrepancy 

in the width of the red-shifted peak, suggesting that the shape 
of the SH electron distribution function around the resonance is 
incorrect. For locations closer to the target, the electron distri-
bution function predicted by classical theory becomes negative 
at velocities around the Langmuir wave resonances, and clas-
sical theory cannot be used to fit the measured spectrum. This 
is consistent with the measured heat flux being significantly 
less than the classical values (Fig. 155.3). At these locations 

,L 10>T
3

eim
-  which confirms experimentally the limit of 

validity previously determined by nonlocal theories.17–22 

To determine the electron distribution functions consistent 
with nonlocal transport, the K2 Vlasov–Fokker–Planck code39 
was used. K2 uses a Legendre polynomial representation of the 
electron distribution function, , , , , ,f t x f t x Pv vn nn i=_ _ ^i i h/  
where x is the direction along the target normal. K2 solves for 
the self-consistent electric field and includes the effects of elec-
tron–ion scattering and electron–electron collisions. To capture 
the fine detail in the distribution functions at high velocities, 
close to the Langmuir wave resonances, polynomials up to 
and including f8 were required. In all calculations, the plasma 
profiles were initially set to the measurements (Fig. 155.4) and 
the temperature at the boundary of the simulation closest to the 
target (+500 nm) was varied between 1.2 keV and 2 keV. Since 
the transport is nonlocal, the choice of boundary condition is 
important to determine heat flow at the edge of the measure-
ment region (i.e., 1.1 mm) but has a small effect at the other 
measurement positions.

Once the initial conditions were set, the K2 code evolved the 
distribution function in time and, after a few collision times, 
reached steady state. Over this time, a small amount of heat-
ing/cooling was applied to the electrons to help maintain the 
temperature profile close to the measured (i.e., initial) values. 
This approximately accounted for the small amount of ongoing 
thermal compression/expansion in the coronal region. Since the 
hydrodynamic motion is slow compared to the electron thermal 
transport, it was ignored. For each boundary condition, the 
electron distribution functions at each measurement position 
were used to calculate Thomson-scattering spectra. The bound-
ary condition (1.8 keV) that generated the Thomson-scattering 
spectra with the best match across all locations was used to 
determine the measured heat flux. The resulting electron dis-
tribution functions were used in Eq. (1) to calculate the spectra 
shown in Fig. 155.2.

The measured heat flux was compared to calculations that 
used the multigroup nonlocal SNB model (Fig. 155.3), ini-
tialized with the measured electron temperature and density 

E27295JR

0.0

0.5

1.0

1.5

1.10

1.15

1.20

1.25

1.30

1100 1200 1300 1400 1500

Distance from target (nm)

T
e 

(k
eV

)

Absolute error bars

n e
 (

×
10

20
 c

m
–3

)

Figure 155.4
Electron temperature (blue circles, left axis) and density (red squares, right 
axis) measurements at t = 1.5 ns. Profiles of electron temperature (dashed blue 
curve) and density (solid red curve) used in Fokker–Planck simulations. The 
relative (1v statistical) error bars are shown with the temperature measure-
ments. The absolute error bars are represented in the inset.
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profiles (Fig. 155.4). In the nonlocal region, where classical 
SH theory overestimates the flux, the SNB model calculates a 
flux that is about halfway between the classical and measured 
values. In the region where classical transport is valid (1.5 mm), 
the SNB model overestimates the flux by 75%. Furthermore, 
in the nonlocal transport regions, the electron distribution 
functions were negative around the electron plasma wave reso-
nance, which made it impossible to fit the measured Thomson-
scattering spectrum.

Figure 155.5 shows the flux contribution of electrons for 
each of the models at 1.2 mm from the target surface. Accord-
ing to the K2 model, the reduction in heat flux relative to the 
classical model at this location occurs as a result of a reduction 
in the flux of electrons with v L 3.4 vte. Furthermore, the peak 
heat flow occurs at a lower velocity (vK2 . 3.5 vte) relative to 
the classical result (vSH . 3.7 vte). The SNB model slightly 
inhibits the flux but still overpredicts the heat flow. The heat 
flux at this location is 60% of the classical value.
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Figure 155.5
The velocity-dependent contribution of heat flux at 1200 nm for calculations 
using the Fokker–Planck (dashed red curve), classical (dotted blue curve), and 
SNB (solid black curve) models. The inset shows the corresponding electron 
distribution functions.

In summary, Thomson scattering was used to measure the 
heat flux directly from the amplitudes of the Langmuir fluc-
tuations and indirectly through the electron temperature and 
density profiles (qSH = ldTe). The measured heat flux agreed 
with classical SH values when ,L 10<T

3
eim

-  but in the oppo-
site limit ,L 10>T

3
eim

-` j  the differences were as large as a 
factor of 2. The multigroup nonlocal SNB model overpredicted 
the flux in all regions, which demonstrates the need to include 

physics often missing from computationally expedient nonlo-
cal models, most notably high-order polynomials for properly 
resolving velocity space, the self-consistent electric field, and 
a Fokker–Planck collision operator.
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