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Reflection and refraction of light at a dielectric interface and 
Snell’s law describing them have been known for centuries 
and are topics discussed at length in physics textbooks.1,2 
However, their temporal analog, where an electromagnetic 
pulse arrives at a temporal interface, has attracted much less 
attention.3,4 A temporal interface is the boundary in time 
separating two regions of different refractive indices. In this 
article we discuss “reflection” and “refraction” of optical 
pulses at such a temporal boundary during their propagation 
inside a dispersive medium. Previous works have examined 
temporal reflection and refraction in nondispersive media 
assuming that refractive index changes everywhere in the 
medium at a certain time.3,4 This is analogous to examining 
the case of normal incidence in space. Temporal changes in 
the refractive index have also been studied recently in the 
context of adiabatic wavelength conversion.5–11

From a physics perspective, a spatial boundary breaks trans-
lational symmetry. As a result, the momentum of a photon can 
change but its energy must remain unaffected. In the case of 
a static temporal boundary, momentum of the photon remains 
unchanged but its energy must change. For this reason, a change 
in angle at a spatial interface translates into a change in the 
frequency of incident light when reflection and refraction occur 
at a temporal interface. We focus on optical pulses propagating 
inside a dispersive medium to reveal novel temporal and spec-
tral features occurring when the pulse experiences reflection 
and refraction at a moving temporal boundary.

To simplify the following discussion, we assume that the 
optical pulse is propagating inside a waveguide with the dis-
persion relation b(~) such that neither its polarization nor its 
transverse spatial shape changes during propagation. When the 
pulse contains multiple optical cycles, b(~) can be expanded in 
a Taylor series around its central frequency ~0 as12
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where we neglect all dispersion terms higher than the second 
order. Physically b1 is the inverse of the group velocity and b2 is 
the group velocity dispersion (GVD). In the case of a moving 
temporal boundary, we work in a reference frame in which 
the boundary is stationary. Using the coordinate transform 
t = T – z/vGB, where T is the time in the laboratory frame and 
vGB is the velocity of the temporal boundary, the dispersion 
relation in the moving frame becomes

 

,H t T
2

0 1 0

2
0

2
B B

-

- -

b ~ b b ~ ~

b
~ ~ b

D= +

+ +

l_

_

_

_

i

i

i

i

 

(2)

where 1 v1 1 GB-b bD =  is a measure of a pulse’s relative 
speed. The parameter k n k c0 0 0Bb ~D= =` j is the magnitude 
of the change in the propagation constant caused by the sudden 
index change Dn at the temporal boundary located at t = TB. The 
Heaviside function H (t–TB) takes a value of 0 for t < TB and 
1 for t > TB. For t > TB, the last term in Eq. (2) shifts the disper-
sion curve by bB, leading to different propagation constants in 
the two temporal regions. We stress that by including dispersion 
and allowing for a traveling boundary we have expanded on the 
concept of temporal reflection and refraction given in Ref. 3.

To study the impact of a temporal boundary, we write the 
electric field associated with the optical pulse in the form

 , , , ,expE r t xF x y A z t i z i t0 0-b ~=v t_ _ _ _i i i i  (3)

where F(x,y) is the transverse spatial profile and A(z,t) is the 
slowly varying envelope of the pulse. Use of Maxwell’s equa-
tions together with the dispersion relation in Eq. (2) then leads 
to the following time-domain equation:12
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For numerical purposes we normalize this equation using
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where T0 is the width, P0 is the peak power of the incident pulse, 
and L T0

2
2D b=  is the dispersion length. The normalized 

amplitude U(p,x) satisfies
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where ,d L T1 0DbD=  ,T T0B Bx =  and b2 = !1 depending 
on the sign of b2.

We solved Eq. (6) numerically with the standard split-step 
Fourier method,12 assuming a Gaussian shape of input pulses. 
For the numerical simulations that follow, the temporal bound-
ary was located at xB = 5 and the dispersion was taken to be 
normal (b2 = +1). We chose d = 20 to ensure that the center of 
the optical pulse would cross the boundary halfway through 
the total propagation length of p = 0.5.

As a first example of temporal reflection and refraction, 
Fig. 143.39 shows (a) temporal and (b) spectral evolutions of 
a Gaussian input pulse for bBLD = 100. The temporal evolu-
tion in part (a) is strikingly similar to an optical beam hitting 
a spatial boundary. From Fig. 143.39(a) we see that the trail-
ing edge of the pulse reaches the boundary near p = 0.15 as 
the faster temporal boundary begins to overtake the optical 
pulse. Although most of pulse energy is transmitted across the 
boundary, the pulse “bends” toward it and its speed changes. 
The transmitted pulse is also narrower in time, similar to how 
a refracted optical beam becomes narrower in space when it is 
bent toward the spatial interface. A small part of pulse energy 
is “reflected” and begins traveling away from the temporal 
boundary. This reflected pulse has the same temporal width but 
its speed increases considerably. In this case both the energy 
and momentum of a photon must change simultaneously while 
crossing the boundary.

Figure 143.39(b) shows how temporal changes are accom-
panied by a multitude of spectral changes. In particular, notice 
how the spectrum shifts and splits as the pulse crosses the 
temporal boundary. Recall that the temporal analog of an angle 
is the frequency. From a fundamental perspective, spectral 

changes occur because a temporal boundary breaks symmetry 
in time. As a result, photon momentum in the moving frame 
(or bl) must be conserved while photon energy (or ~) may 
change. This suggests that the dispersion relation in Eq. (2) 
should be able to explain all spectral changes. Figure 143.40 
shows dispersion curves for x < xB (dashed blue) and x > xB 
(solid green). In the moving frame, the slope of these curves 
gives the speed of the pulse relative to the temporal boundary, 

Figure 143.39
Evolution of (a) the pulse shape and (b) the spectrum in the presence of a 
temporal boundary at xB = 5 (dashed white line) with bBLD = 100. Time 
is measured in a reference frame that moves with the temporal boundary.

Figure 143.40
Normalized dispersion curves for x < xB (dashed blue) and x > xB (solid 
green). The shaded region shows the spectral extent of the input pulse and 
the corresponding range of propagation constants for x < xB. The slope of the 
dispersion curve is related to the speed of the pulse relative to the traveling 
temporal boundary.
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rather than the actual group velocity. As mentioned earlier, even 
though b (related to photon momentum) is not conserved, the 
corresponding quantity bl is conserved in the moving frame. 
We use this conservation law to understand the spectral shifts 
of refracted and reflected pulses.

To conserve bl when transitioning from the x < xB region to 
the x > xB region, each frequency component must shift from 
the dashed curve to a point on the solid curve with the same 
value of bl. Because the curve is locally parabolic, the two 
frequencies at points (1) and (2) on the solid curve match the 
initial value of bl. Only point (1) is a valid solution, however, 
since the slope, related to the speed of the pulse, should have the 
same sign for the transmitted pulse. The entire pulse spectrum 
shifts toward the red side (for bB > 0) since each frequency 
component of the pulse must shift accordingly. Since the slope 
of the dispersion curve at the new central frequency is different, 
the transmitted pulse must travel at a different speed relative 
to the temporal boundary. This change in the group velocity is 
what leads to the apparent bending observed in Fig. 143.39(a).

The reflected pulse is caused by the second point on the 
dashed curve that has the same propagation constant, marked as 
point (3) in Fig. 143.40. This point must have the opposite slope 
to ensure that the pulse reflects back into the x < xB region. We 
stress that the reflected pulse does not travel backward in time 
or space; rather its speed is increased so much that it moves 
away from the temporal boundary. Both the reflected pulse 
and the temporal boundary continue to propagate through the 
dispersive medium in the +z direction. Figure 143.39(b) shows 
that the spectrum of the reflected pulse is shifted toward the 
red side by about T40 2 0o rD = _ i or by more than 6 THz for 
a pulse with T0 = 1 ps. It also shows that the energy transfer 
occurs over a relatively small distance during which the pulse 
passes through the temporal boundary.

So far we have considered only the central frequency of the 
optical pulse. However, the pulse has a finite spectral width 
and bl must be conserved for all frequencies in the spectrum. 
In Fig. 143.40, the shaded region shows the width of the input 
pulse spectrum and the corresponding range of propagation 
constants for x < xB. We can see that the shaded region on the 
transmitted curve covers a much wider spectral region than on 
the incident curve. This leads to the spectral broadening and 
temporal narrowing of the refracted pulse. If the sign of bB was 
reversed, shifting the curve in the opposite direction, the pulse 
spectrum would be compressed and the pulse would correspond-
ingly broaden in time. 

One may ask how much the momentum changes in the labora-
tory frame. It is easy to see that .vGB0-b b ~ ~= +l _ i  Since 
bl remains constant, b changes by an amount .vGB0-~ ~_ i  
Clearly, a moving boundary breaks both temporal and spatial 
symmetries, forcing momentum and energy to change simul-
taneously. This is similar to the behavior observed in interband 
photonic transitions.13

To obtain analytic expressions for the spectral shifts caused 
during temporal reflection and refraction, we impose the 
requirement of momentum conservation in the dispersion rela-
tion given in Eq. (2). To do so, we choose a specific frequency 
component, i.e., the center frequency ~0, and set bl(~) = b0 in 
Eq. (2), resulting in the quadratic equation
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The last term vanishes for t > TB and the two solutions of the 
quadratic equation are 

 .2andi r0 0 1 2-~ ~ ~ ~ b bD= = ` j  (8)

These solutions represent the incident and reflected frequen-
cies and correspond to the points (1) and (3), respectively, in 
Fig. 143.40. The transmitted frequency is found by noting that 
the last term in Eq. (7) is finite for t > TB and has the value bB. 
Solving the quadratic equation again, we obtain
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As discussed earlier, only the positive sign corresponds to a 
physical solution shown as point (2) in Fig. 143.40. In the limit 

,21 B&b b bD  this equation can be approximated as
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The numerical results shown in Fig. 143.39 agree with these 
analytic expressions derived using the concept of momen-
tum conservation.

The analytical results found in this article provide consid-
erable insight into the phenomena of temporal reflection and 
refraction of optical pulses. Consider first the frequency shift 
of the reflected pulse: Eq. (8) indicates that this shift depends 
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on both the sign and magnitude of the GVD governed by the 
parameter b2. In particular, it disappears as b2 " 0. It fol-
lows from Eq. (2) that the parabolic dispersion curve seen in 
Fig. 143.40 reduces to a straight line in this limit, indicating 
that point (3) in Fig. 143.40 ceases to exist. Note also that the 
direction of frequency shifts depends on the nature of GVD. 
A red shift occurring for normal dispersion becomes a blue 
shift in the case of anomalous dispersion. Another noteworthy 
feature is that the frequency shifts do not depend on the refrac-
tive index change Dn across the temporal boundary. Of course, 
the energy transferred to the reflected pulse depends strongly 
on the magnitude of bB. These features are analogous to what 
occurs at a spatial interface.

We now ask how large the spectral shift can be for the 
reflected pulse. As discussed earlier, a spectral shift of about 
6 THz occurs for the parameters used in Fig. 143.39. Equa-
tion (8) indicates that even larger spectral shifts are possible by 
reducing the magnitude of the GVD parameter; i.e., by operat-
ing close to the zero-dispersion wavelength of the waveguide 
used to observe this phenomenon.

The refracted pulse also undergoes a spectral shift that 
is analogous to a change in the direction of an optical beam 
refracted at a spatial boundary. As seen in Eq. (9), this shift 
depends on the magnitude of bB, in addition to the GVD 
parameter b2 and the differential group delay (DGD) Db1 of 
the pulse. In the limit ,1 2B&b b bD  the spectral shift becomes 
independent of b2. Its magnitude in all cases is much smaller 
than that found for the reflected pulse. As an example, for an 
index change of Dn = 10–4 and Db1 = 100 ps/m, this shift is 
about 1 THz at a wavelength of 1.06 nm.

Although Eqs. (8) and (9) provide the expected frequency 
shifts, they do not have an obvious resemblence to the spatial 
laws of reflection and refraction. Indeed, it is difficult to find 
analogous relations since the concept of an angle, familiar in 
the spatial context, is replaced with the DGD Db1, indicating 
the speed of the pulse relative to a temporal boundary. Nev-
ertheless, one may gain some insight if we use the location of 
extremum of the dispersion curve in Fig. 143.40 as a reference 
frequency ~c, where the slope db/d~ = 0. If we shift the origin 
in Fig. 143.40 so that all frequencies are measured from the 
reference frequency c 0 1 2-~ ~ b bD=  and use the notation 
D~ = ~-~c, the reflected and transmitted frequencies are 
related to the input frequency as 
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The first equation is analogous to the law of reflection. The 
second one can be written in the following suggestive form:
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For small values of bB, a remains relatively small, resulting 
in small frequency shifts during refraction and small changes 
in the pulse speed. Frequency shifts increase with increasing 
bB. At some value of parameters, a becomes r/2 and D~t van-
ishes. At that point, the transmitted pulse’s central frequency 
coincides with the frequency ~c.

We must ask what happens if bB is large enough that a loses 
its meaning. Since D~t becomes undefined, no refracted pulse 
can form past the temporal boundary and the incident pulse 
must be totally reflected. This is the temporal analog of the 
well-known phenomenon of total internal reflection (TIR). The 
condition for the temporal TIR is found from Eq. (12) to be

 .2 >2 1Bb b bD  (13)

Temporal TIR can also be understood from the two disper-
sion curves shown in Fig. 143.40. When bB is large enough 
to shift the green curve in Fig. 143.40 completely out of the 
shaded region, momentum conservation or phase matching 
cannot be achieved for any spectral component of the incident 
pulse. As a result, no pulse energy can enter the x > xB region 
beyond the temporal boundary; however, the momentum can 
still be conserved for the reflected pulse. As a result, the pulse 
should be completely reflected at the boundary. We performed 
numerical simulations to confirm that this is indeed the case. 
Figure 143.41 shows the numerical results for bBLD = 280, a 
value that places the transmitted curve just above the shaded 
region. As predicted by our simple theory, there is no transmit-
ted pulse and the entire pulse is reflected. The spectral evolution 
in Fig. 143.41(b) shows how the pulse energy is transferred to 
the reflected pulse over a small distance after the trailing end of 
the incident pulse hits the temporal boundary. Closer inspection 
reveals that a portion of the pulse extends past the temporal 
boundary, forming a temporal analog to the evanescent wave.

The existence of temporal TIR seems to contradict the 
findings in Ref. 3, where a temporal analog of Snell’s law is 
derived that does not allow for TIR to occur. However, the study 
in Ref. 3 did not include the effects of dispersion. Indeed, our 
theory shows that no reflection occurs if b2 is set to 0. 
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In summary, we have shown that when an optical pulse 
approaches a moving temporal boundary across which the 
refractive index changes, it undergoes a temporal equivalent 
of reflection and refraction of optical beams at a spatial bound-
ary. The main difference is that the role of angle is played by 
changes in the frequency. The dispersion curve of the material 
in which the pulse is propagating plays a fundamental role in 
determining the frequency shifts experienced by the reflected 
and refracted pulses. The analytic expressions that we were 
able to obtain for these two frequency shifts show that the 
spectral shift is relatively small for the refracted pulse but can 
be quite large for the reflected pulse. Moreover, the shifts can 
be either on the red side or on the blue side of the spectrum of 
the incident pulse, depending on the nature of both the group-
velocity dispersion and the refractive index change. These 
spectral shifts are caused by a transfer of energy between the 
pulse and the temporal boundary while the number of photons 
is conserved.3 Because our temporal boundary is induced by 
an external source, this is not a closed system and energy is not 
conserved in the pulse. We have also indicated the conditions 
under which an optical pulse experiences the temporal analog 
of TIR. Numerical results confirm all analytical predictions 

based on the physical concept of momentum conservation in 
the moving frame. 

An experimental observation of reflection, refraction, and 
TIR at a temporal boundary will be of immense interest. Our 
estimates show that changes in the refractive index across this 
boundary can be as small as 10–6 for verifying our theoretical 
and numerical predictions. The main issue is how to control 
the relative speed of the pulse with respect to the temporal 
boundary. One possibility is to use a traveling-wave electro-
optic modulator in which a microwave signal propagates at a 
different speed than that of the optical pulse. A pump–probe 
configuration in which cross-phase modulation would be used 
to produce a moving temporal boundary may also be possible 
but will require pump pulses of high energies.
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Figure 143.41
(a) Temporal and (b) spectral evolutions of an optical pulse undergoing total 
internal reflection (TIR) at a temporal boundary located at xB = 5 (dashed 
white line). The index change is large enough that bBLD = 280. Time is mea-
sured in a reference frame that moves with the temporal boundary.
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