
PrecomPensation of Gain nonuniformity in a nd:Glass amPlifier usinG a ProGrammable beam-shaPinG system

LLE Review, Volume 139198

Introduction
A dynamic beam-shaping system using a liquid crystal spatial 
light modulator (SLM) has undergone a successful transition 
from initial proof-of-principle demonstrations1,2 to implementa-
tion in a high-energy laser such as LLE’s OMEGA EP.3 The 
operation principle of the beam-shaping system is based on the 
phase-only carrier method, which enables one to have arbitrary 
two-dimensional (2-D) control of both the laser-beam fluence 
and wavefront by adjusting the modulation depth and the bias of 
the carrier phase. A liquid crystal on silicon (LCOS) SLM can 
be used to create a programmable high-frequency carrier phase. 
Closed-loop operation of such a device paired with feedback 
from a near-field camera or a wavefront sensor dramatically 
improves the performance.2 

Gain precompensation4 and spot shadowing,5,6 are impor-
tant applications of a dynamic beam shaper in high-energy 
lasers. The precompensation of gain inhomogeneity in ampli-
fiers reduces the peak-to-mode in fluence distribution in such 
a way that the total energy of the beam can be increased 
without risking damage to the optics. The gain precompensa-
tion in OMEGA EP long-pulse (ns) beamlines is achieved in 
multiple steps using both static and dynamic beam shapers.3,7 
The dynamic beam shaper is located in the low-energy front 
end, where a residual 2-D correction map is applied to improve 
the overall system gain precompensation performance and the 
uniformity of the final output beam. A similar gain precom-
pensation experiment was performed in another facility for 
a Nd:glass amplifier but with insignificant improvement in 
beam uniformity.8 

This article presents a more-challenging application of 
dynamic beam shaping in the context of a 50-J, 700-fs opti-
cal parametric chirped-pulse–amplification (OPCPA) system. 
The high degree of gain saturation in the optical parametric 
amplification (OPA) crystals precludes the possibility of install-
ing the SLM before the OPA. The incident beam energy on 
an SLM installed after the OPA is high enough, however, to 
damage the device if not carefully managed. Pulse contrast 
degradation caused by the secondary reflection from the front 

surface of the SLM cover glass is a non-negligible problem in 
this pulse-width regime. It introduces a prepulse 30 ps before 
the main pulse. We have been able to mitigate or remove these 
problems. The details of our approach will be described later. 

Significant improvements and diversifications in the algo-
rithms and the mode of operations of the carrier method have 
been made. First, a large discrepancy was found between 
the analytic transmission function derived in Ref. 1 and the 
experimental function. An empirical formula is introduced here 
that agrees better with the measurements. It greatly improves 
the accuracy of the open-loop algorithm. The closed-loop 
algorithm introduced in Ref. 2 is based on incrementing or 
decrementing a fixed unit-step size of the digital command 
map. It can be inefficient to use a fixed step size where many 
steps are required for convergence. A more-efficient closed-
loop algorithm will be discussed. 

The type of carrier used in the carrier beam–shaping method 
is not limited to a one-dimensional (1-D) rectangular carrier. 
A checkerboard-pattern carrier was successfully used in the 
laser-cavity mode shaping in Ref. 9. The choice of the trans-
mitted diffraction order does not need to be the zeroth order. 
A sawtooth-shaped carrier beam can maximize the diffracted 
energy into the first-order diffraction term, where the first-order 
term is chosen to be the main transmitted beam. Such mode 
of operation is fail-safe since the beam can propagate only in 
the presence of a carrier.

Improvements to the carrier beam–shaping algorithms will 
be discussed followed by detailed descriptions of the laser 
system and the experimental results. 

Improvement and Diversification of the Original Carrier 
Beam–Shaping Method

In the original phase-only carrier beam–shaping method, 
a rectangular carrier phase is applied to an SLM. A beam 
incident on the SLM acquires high-frequency modulation in 
phase and diffracts into the zeroth- and first-order diffractions. 
As the modulation peak-to-valley (p–v) approaches r, more 
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energy diffracts into the first- and higher-order diffractions. 
The diffracted beams are filtered and only the zeroth-order 
beam is allowed to pass. In this way the intensity transmission 
factor can be adjusted by controlling the modulation depth of 
the carrier phase. A 2-D transmission map as a function of 
carrier amplitude can be generated to achieve a desired beam 
shape. This principle can be modified in such a way that the 
first-order diffraction beam passes, whereas the zeroth-order 
beam is blocked. The benefit of such a configuration is that 
the beam does not propagate when the SLM fails to introduce 
the carrier, which is a useful feature for fail-safe operation in 
a high-energy laser. The disadvantage is that the maximum 
transmission cannot exceed 50% because the first-order dif-
fractions are equally split. The low efficiency can be improved 
by using a sawtooth carrier phase (blazed grating) instead of a 
rectangular one. The diffraction efficiency of the first-order dif-
fraction for the sawtooth carrier phase can be very high. These 
two modes of operation are schematically shown in Fig. 139.39, 
where Fig. 139.39(a) describes the original carrier beam–shap-
ing setup and Fig. 139.39(b) shows the modified carrier method 
in Littrow configuration. We refer to the first configuration as 
normal mode and the second as diffractive mode. For later 
discussions, the transmission [T(x,y)] of a carrier method in the 
near field of each setup after filtering is defined as
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for normal- and diffractive-mode methods, respectively. Einc is 
the incident local energy on the SLM and E0th order, E1st order 
are the local reflected energy contained in the zeroth- or first-
order diffraction beam, respectively.

1. Improvement in the Open-Loop Algorithm
The algorithm described here assumes using an LCOS-SLM 

device whose voltage-to-phase-retardation response is linear-
ized by using a look-up table (LUT). Use of an LUT does not 
completely remove the small variations in phase retardation 
in individual pixels of an SLM. In our case, the variation is 
!6%. In an open-loop algorithm, we attempted to achieve the 
best beam-shaping performance in a single step, neglecting 
these small variations. We used a reflective LCOS-SLM from 
Hamamatsu (X10468). The phase of an individual pixel is 
controlled by applying voltage on the nematic liquid crystal 
sandwiched between two parallel-aligned alignment layers. The 
SLM has 600 # 800 20-nm pixels over a 12 # 16-mm2 area. 
A phase retardation from 0 to 2 waves can be independently 
introduced on each pixel.

a. Normal mode.  The theoretical normal-mode transmis-
sion for a rectangular carrier phase with !2rA fluctuation was 
shown to be ;cos(2rA);2 in Ref. 1. The actual transmission devi-
ates, however, from the theoretical prediction. The theoretical 
and measured transmission curves are shown in Fig. 139.40. 
The transmission loss from the SLM’s reflectivity (93%) was 
not included in the calculation or measurements. The plot of 
blue circles is the theoretical prediction, whereas the colored 
solid lines are the transmissions measured at three different 
carrier frequencies by varying the carrier amplitude (A) from 
0 to 1 wave. The transmission at each carrier frequency was 
averaged over nine different points on the SLM. The black, 
blue, and red solid lines correspond to the carrier periodicity 
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Figure 139.39
Two modes of carrier-beam shaping: (a) normal 
mode using the zeroth-order beam as the main beam 
and (b) diffractive mode using the first-order beam 
as the main beam.
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of two, four, and six pixels, respectively. The measured trans-
mission curves show discrepancies with the theoretical curve 
in that the location of the first minimum is farther away from 
the theoretical 0.25 and the second peak is lower than 1. The 
deviation becomes larger as the carrier frequency increases. 
Another theoretical transmission curve based on a sinusoidal 
carrier is shown by the plot of purple circles. The analytic trans-
mission function of a sinusoidal carrier is a Bessel function (J0). 
Comparison of the analytic and measured transmission curves 
shows that the measured transmission has characteristics some-
where between the rectangular and sinusoidal carriers. Based 
on this observation, the empirical transmission function can be 
expressed using both cosine and Bessel functions as follows:

 ,cosT A c a bA aJ bA c1 1 2 20
2- - r r= +^ ^ ^ ^ ^h h h h h7 A  (3)

where T is the transmission as a function of carrier amplitude 
A. The fit parameters (a,b,c) for each averaged transmission 
curve are given in Table 139.II. The numerically fit transmission 
functions are shown as dashed lines in Fig. 139.40.

The locations of the first minima calculated from the ana-
lytic function with the given fit parameters are shown in the 
Amin column. The minimum transmission is the same as c. The 
value of c is shown to the fourth digit to emphasize the fact that 
there is a low level of leak even at “zero” transmission. The 
extinction is better at a lower carrier frequency. 

The choice of carrier frequency depends on beam-shaping 
applications. The 6-pixel–period carrier requires a smaller 
carrier wavefront amplitude than the 2-pixel carrier (0.28 ver-
sus 0.40) to achieve maximum contrast, leaving the rest of 
the dynamic range for wavefront correction. On the other 
hand, the two-pixel–period carrier allows for more digital 
levels per unit transmission change, and therefore a finer 
beam-shaping scale.

b. Diffractive mode.  The transmission characteristic of 
the diffractive-mode beam shaping using a sawtooth carrier 
is shown in Fig. 139.41. The transmission with respect to the 
blazed-grating amplitude was measured at different grating 
periods. Each curve was averaged over nine different points 
on the SLM. The analytic transmission function for a sawtooth 
carrier is 

G10188JR

0.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.2 0.4 0.6

Carrier amplitude (waves)

T
ra

ns
m

is
si

on

0.8 1.0

Rectangular carrier
Sinusoidal carrier
2 pixel
2-pixel �t

4 pixel
4-pixel �t
6 pixel
6-pixel �t

Figure 139.40
Transmission curve with respect to varying wavefront ampli-
tude. The 6-pixel–period carrier transmission is closer to that 
of the rectangular carrier and the 2-pixel–carrier transmission 
is closer to the sinusoidal carrier transmission. There is a finite 
extinction resulting from scattering. 

Table 139.II: Rectangular-carrier transmission param-
eters. The transmission of the 2-pixel 
(px)–period carrier is fit over 0 < A < 1. The 
fit range for 4-pixel– and 6-pixel–period 
carriers is 0 < A < 0.6.

Carrier Period a b c Amin

2 px 0.64 0.80 0.0015 0.40

4 px 0.39 0.95 0.0006 0.30

6 px 0.23 0.97 0.0001 0.28
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where C is the diffraction efficiency and A is half the p–v of 
the sawtooth carrier. C is lower than 1 because the sawtooth 
shape is pixelated in LCOS-SLM. As in the case of the rectan-
gular carrier, the analytic transmission function does not agree 
well with the measured transmission, albeit the discrepancy 
is smaller in this case. We find that the following empirical 
expression, made of trigonometric and Bessel functions similar 
to Eq. (3), fits the data better than the analytic function:

 .sinT A c a bA aJ bA1 2 22
2- r r= +^ ^ ^ ^h h h h7 A  (5)

The fit parameters (a,b,c) are summarized in Table 139.III.

Table 139.III: Sawtooth-carrier transmission parameters. The 
curves were fit over 0 < A <0.7.

Carrier Period a b c Amax Tmax 

5 px 0.52 0.61 1.88 0.48 0.73

6 px 0.65 0.65 2.60 0.49 0.78

7 px 0.69 0.66 2.89 0.50 0.80

8 px 0.70 0.67 3.00 0.50 0.81

Retaining a high diffraction efficiency is important for a 
diffractive mode. Figure 139.41 suggests that the maximum 
transmission reaches 81% with an 8-pixel carrier but does 

not improve much beyond that. The carrier frequency cannot 
be set too low in any case because the first- and zeroth-order 
diffractions must be angularly separated. The effective spatial 
resolution is also reduced with a large period carrier. As in the 
rectangular carrier setup, the 93% reflectivity of the device 
was not included in the measurement. The actual maximum 
throughput is 75% for the 8-pixel carrier. 

The fit parameters in either normal or diffractive mode must 
be recharacterized whenever there is a change in the design of 
the LCOS chip, such as the fill factor.

2. Closed-Loop Algorithm
Based on the quasilinear response of the SLM to com-

mand voltage, a general form of a 2-D command map C(x,y) 
including wavefront shaping [W(x,y), bias of carrier] and 
transmission control [A(x,y), envelope of carrier, same as A in 
Eqs. (3) and (5)] can be written as

 , , ,C x y W x y A x y carrier#c= +` ` ` ^j j j h9 C (6)

or

 , , , ,C x y C x y C x y carrierW A #= +` ` ` ^j j j h  (7)

where the spatial frequency of W(x,y) should be smaller than 
that of the carrier, c is a conversion factor from wavefront 
unit to command voltage, and CW and CA are command maps 
corresponding to W and A, respectively. Because of the small 
local variations in the phase retardation at a constant voltage 
across the device, C(x,y) producing the required W(x,y) and 
A(x,y) cannot be exactly determined in a single step. A closed-
loop algorithm is required to improve the result. A variant of 
the Newton method and a closed-loop algorithm based on that 
method will be discussed. 

a. Constant maximum-derivative Newton method.  The 
Newton method iteratively finds a solution for the equation 
F(x) = 0 using 

 ,x x
F x

F x
n n

n

n
1 -=+

l `
`
j
j

 (8)

where x corresponds to the command map state. For given 
wavefront and transmission objectives (Wobj and Tobj), the 
function F(x) corresponds to W(x)–Wobj for wavefront shaping 
and T(x)–Tobj for intensity shaping. W(x) represents the actual 
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Figure 139.41
Transmission characteristic of the diffractive-mode carrier.
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wavefront produced by the SLM at a given command voltage 
x = CW, and T(x) represents the actual transmission of intensity 
at a given command voltage x = CA. With only the approxi-
mate form of W(x) or T(x) known, the derivative in the Newton 
search cannot be calculated exactly. Fl(x) can be replaced with 
the derivative of an analytic expression for the mean response. 
This approach works quite well most of the time but it is not 
stable. Toward the end of the iterations, xn can be caught up 
in an oscillation around the solution and might even diverge, 
especially where the response is jagged. Our approach is to 
fix the derivative to a constant value smaller or larger than 
the actual derivative, depending on its sign. This ensures the 
convergence of the iterator for any noisy functions. The original 
Newton search method is modified to 

 ,x x
F

F x
n n

n
1

max
-=+ l

` j
 (9)

where Flmax is smaller than inf [Fl(x)] for a noisy downhill func-
tion or larger than sup[Fl(x)] for a noisy uphill function. We 
present a graphical illustration of this approach in Fig. 139.42 
for a noisy uphill function. The initial solution starting from 
the right-hand side approaches toward the solution without 
divergence using a positive constant derivative larger than 
any part of the actual derivative in the function even in noisy 
conditions. A starting point located in the left-hand side again 
approaches the solution without divergence. A similar argu-
ment can be given for a noisy downhill function. Figure 139.43 

shows the actual derivatives of the measured normal-mode 
transmission function of the six-pixel carrier at various points 
on the SLM, which is very noisy. Since the transmission func-
tion for the normal beam-shaping mode is globally downhill, 
the appropriate constant derivative can be set to –10 lower than 
any measured derivative.

G10191JR
Carrier amplitude (A, waves)

D
er

iv
at

iv
e 

of
 tr

an
si

m
is

si
on

 (
dT

/d
A

)
0.0

–10

–8

–6

–4

–2

0

2

4

6

0.2 0.4 0.6 0.8 1.0

Derivative of analytic �t
Derivative of actual data

Figure 139.43
The derivative of transmission function. The actual derivative of the measured 
transmission data of six-pixel period carrier modulation is shown on top of 
the derivative of the empirical formula.

The proposed method is different from the damped Newton 
method, which is 

 ,x x
F x

F x
n n

n

n
1 - a=+

l `
`
j
j

 (10)

where a is a damping factor. This damping factor a allows one 
to make a conservative move in the next step, but it is not free 
from the erratic behavior of Fl(x). It is also unstable where Fl(x) 
is close to zero, which is one of the general problems of the 
Newton method. On the other hand, the constant maximum-
derivative Newton method always converges. The proposed 
method is well suited for the case where the general behavior 
of a function can be expressed as an invertible analytic function 
but its micro-behavior is not well characterized. The proximity 
of the solution is reached by inverting the analytic function such 
as Eq. (3) or Eq. (5). The final solution is refined by Eq. (9).

b. Wavefront- and fluence-shaping algorithms.  The iteration 
algorithms for either wavefront shaping or fluence shaping are 
formulated using the constant maximum-derivative Newton 
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Figure 139.42
Illustration of the constant maximum-derivative Newton search algorithm. A 
zero of a noisy uphill function is found without diverging by using a constant 
search derivative larger than sup[Fl(x)], even with local downhill sections.
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method. Since xn in Eq. (9) represents an independent point in 
a 2-D command map, Flmax can be independently set for dif-
ferent points on the SLM. Nonetheless, a single number is used 
for the entire 2-D map for convenience. Since the wavefront 
response with respect to its command voltage CW is a mono-
tonically increasing function, one chooses Flmax > sup[Fl(x)]. 
The wavefront response function can be expressed as 

 ,W C W C CW W W0 h= +_ _ _i i i  (11)

where W0(CW) represents an averaged response of the SLM 
with respect to the command map. In general this function 
is a linear function of CW and h(CW) accounts for the small 
deviation in the actual response from the ideal linear function. 
With the objective wavefront denoted as Wobj and the constant 
search derivative as (dW/dCW)max, the iteration process of the 
command voltage can be established as follows: 
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The function W(CW,n) implies the measurement of the actual 
wavefront with the nth command map state CW,n.

An intensity-shaping closed-loop algorithm can be similarly 
constructed. The transmission function is again expressed as 
the sum of an averaged response and small deviation as 

 ,T C T C CA A A0 g= +_ _ _i i i  (13)

where T0(CA) denotes either Eq. (3) or Eq. (5) and g(CA) is a 
small deviation function. Defining the objective transmission as 
Tobj and the maximum derivative as (dT/dCA)max, the iteration 
process for the carrier envelope command voltage is 
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The constant search derivative (dT/dCA)max is to be under-
stood as a negative value smaller than the infimum of dT/dCA 
in the case of normal-mode beam shaping or a positive value 
larger than the supremum of dT/dCA in the case of reverse beam 
shaping. In either case, the valid interval of CA is from zero to 

CA,min or CA,max. CA,min and CA,max are command voltages 
corresponding to Amin or Amax shown in Tables 139.II and 
139.III The inversion function T0

1-  is numerically calculated. 

Since the fluence is the quantity measured directly, it is 
more useful to express the above iteration formula in terms of 
fluences. Since the objective fluence map Fobj is Tobj # Finit, 
where Finit is the initial fluence map, 
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The iteration does not start if ;Finit; < e or ;Finit–Fobj; < e 
since it suggests that there is either no beam to shape or no 
need to shape. CA locally corresponding to these conditions is 
fixed at 0 for normal mode or at CA,max for diffractive mode. 
The iteration stops if ;F(CA,n)–Fobj; < e or if CA,n > CA,min for 
normal mode or if CA,n < 0 for diffractive mode. The second 
criterion is needed when Fobj is specified to be much smaller 
than the system can handle. For example, the minimum trans-
mission of a rectangular carrier can be a few percent higher 
for a certain LCOS-SLM model with a low fill factor, while 
the objective transmission can be ideally set to 0%. Unable to 
reach the solution, the iteration will keep increasing CA,n past 
the minimum (same as Amin in Table 139.II). Setting an upper 
limit to CA,n will prevent this runaway situation.

Equations (12) and (15) can be rewritten using gain param-
eters (gW and gA) that are positive and smaller than 1: 

 C C g W W C, , ,W n W n W W n1 obj-= ++ ` j9 C (16)

and

 g ,C F C F F, , ,A n A n A A n1 obj init! -=+ C ` j9 C  (17)

where positive and negative signs in front of gA correspond to 
normal and diffractive modes, respectively. 

Application in Gain Precompensation  
for a Nd:Glass Amplifier

The Multi-Terawatt (MTW) laser at LLE consists of an 
OPCPA front end and two glass amplifiers.10 The OPCPA front 
end consists of three OPA stages—one before and two after the 
stretcher. The preamplification before the stretcher improves 
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the pulse contrast.11 The two OPA stages after the stretcher 
amplify the pulse up to a200 mJ. The first main amplifier after 
the OPCPA front end is a 25-mm-diam Nd:glass rod amplifier 
(RA) in a double-pass configuration. The second main amplifier 
is made of four 400-mm-aperture disks installed in a zigzag 
formation at the Brewster angle. The 200-mJ pulse from the 
OPCPA front end is amplified to 2 J through the RA and can 
be boosted up to 120 J by four passes through the disk ampli-
fier. The amplified pulse is then compressed and sent to the 
target chamber. The schematic of the whole system is shown 
in Fig. 139.44(a). The SLM is placed between the OPCPA 
front-end output and the RA at an image plane. A more-detailed 
schematic of this part of the system is shown in Fig. 139.44(b). 
The square output beam from the OPCPA front end is ana-
morphically imaged to the rectangular area of the SLM (see 
Improvement in the Open-Loop Algorithm, p. 199). It is 
restored back to the original square beam by double-passing 
the same anamorphic imaging system. A static phase corrector 
in front of the SLM cancels the intrinsic wavefront error in the 
SLM.2 The beam is shaped to a gain-precompensated profile by 
the SLM using the normal-mode carrier method. After the SLM, 
the beam is switched out by polarization optics and imaged 
to the exit surface of the RA. On double-passing the RA, the 
amplified pulse is magnified and imaged to the disk amplifier. A 
sample of the injection beam to the disk amplifier is picked off 
by an uncoated mirror blank and imaged to a wavefront sensor.

The anamorphic image relay (AIR) is made of two pairs 
of cylindrical lenses. The outer and inner pairs of cylindrical 

lenses separately image the horizontal and vertical dimensions 
with different magnifications. The 13 × 13-mm2 input beam is 
transformed into a 12 × 16-mm2 beam on the SLM. An AIR 
works for only a fixed object distance. The error in the object 
distance is recovered by adjusting the image distance, but only 
in one dimension in an AIR. The tolerance in object positioning 
within which the imaging conditions in horizontal and verti-
cal dimensions remain the same can be derived by using the 
Maréchal criterion for the defocus term as

 ,Az
M

D
2

2

obj #
mD

 (18)

where M M Mx y
2 2 2-D =  and D is the smallest feature size of 

the object. With a few-hundred-micron feature size in the beam 
and DM2 = 0.66, the positioning tolerance is tens of millimeters. 

The full utilization of the rectangular area of the SLM 
reduces the peak fluence by 25% and allows for a safer opera-
tion below the damage threshold of the SLM. The damage 
threshold of LCOS samples, which were the same kind as 
used in the device, was found to be 230 mJ/cm2 using the same 
2.5-ns OPCPA pulses running at 5 Hz. The peak fluence of the 
anamorphically imaged beam on the SLM at the maximum 
OPCPA energy (200 mJ) does not exceed 160 mJ/cm2. The AIR 
does not require a vacuum system; there is a large separation 
between the sagittal and tangential focal planes, significantly 
reducing the intensity near the focus. 
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Figure 139.44
(a) Overall schematic of the Multi-Terawatt (MTW) laser; (b) detailed schematic of the MTW beam-shaping system. The image relay shown between the rod 
amplifier (RA) and disk amplifier is a simplified representation. TFP: thin-film polarizer; FR: Faraday rotator; HW: half-wave plate; QW: quarter-wave plate; 
SPC: static phase corrector; WFS: wavefront sensor; AIR: anamorphic image relay.
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The reflection from the antireflective (AR)-coated first sur-
face of the SLM cover glass introduces a prepulse 30 ps before 
the main pulse, down at the –40-dB level. This is not accept-
able for experiments requiring a high-contrast pulse. The SLM 
was customized with a wedged cover glass to eliminate the 
prepulse; the wedge angle was 4.1 mrad. An alternative would 
be diffractive-mode beam shaping, where the prepulse from 
the cover glass is automatically separated from the main pulse.

The beam profile at the diagnostic wavefront sensor [WFS 
in Fig. 139.44(b)] before and after the amplification in the rod 
amplifier is shown in Fig. 139.45. The relatively uniform input 
OPCPA beam profile shown in Fig. 139.45(a) is highly distorted 
at the bottom corners after amplification in the rod amplifier 
[Fig 139.45(b)]. 

Based on the two fluence maps measured before and after 
the amplification, a gain-precompensated fluence map, or an 
objective map, can be designed that will become uniform on 

amplification. Assuming the objective is a super-Gaussian 
beam, the objective fluence has the following form:

 ,F F F T0obj peak gain# #=  (19)

where Fpeak is a constant that adjusts the maximum objec-
tive fluence and F0 is a super-Gaussian beam profile usually 
expressed as

 .expF R
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Tgain is a map of the ratio between the fluences before and 
after amplification:

 ,T F

F
gain

amp

init
=  (21)

where Finit and Famp correspond to Figs. 139.45(a) and 
139.45(b), respectively. 

The ratio map calculated as above cannot be directly used 
because it is not well defined where the denominator is close to 
or equal to zero. A special region of interest is created to avoid 
this problem and to add stability in a 2-D polynomial fit. The 
region of interest consists of an interior region and an exterior 
rectangular frame as shown in Fig. 139.46. In the interior region 

Figure 139.45
Beam profile (a) before and (b) after amplification through the rod ampli-
fier. The lower bottom corners of the beam become hot after amplification. 
The dimensions of the images correspond to camera space in the diagnostic 
beam path.
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Region of interest for polynomial fit.
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(XA) the signal level of both Finit and Famp is above 5% of the 
maximum signal level. The outer region (XB) is a region of the 
rectangular frame. The coefficients for a set of 2-D Legendre 
polynomials are calculated to fit the measured gain ratio within 
the interior region and all zeros in the exterior frame region. 
The zeros in the frame stabilize the edge of the polynomials. 
The outer region has dimensions of 2x0 # 2y0 with the frame 
thickness dR. There is a no strict rule to setting x0, y0, and dR. 
The frame size should be large enough to cover the interior 
region but not bigger than the camera area; dR should be set 
thin enough to provide the best numerical fit. The number of 
modes used in this case was 240. The polynomial representa-
tion of Tgain is normalized to 1 at the end. 

The polynomial fit in combination with the super-Gaussian 
envelope F0 provides a smooth objective profile that can be 
experimentally achieved. In Eq. (19), Fpeak is a single number 
that can be adjusted from zero to a few times the maximum of 
Finit; Fpeak is set as high as possible to minimize the energy 
loss from beam shaping. 

As a final step, the part of the objective map accidentally 
set higher than Finit is set to Finit and set to zero where it is 
negative. The remaining sharp features are low-pass filtered.

Figure 139.47(a) shows the beam-shaping result precom-
pensating the gain nonuniformity in the amplifier shown in 
Fig. 139.45(b). The precompensated beam is restored to a flat 
beam profile after amplification as shown in Fig. 139.47(b). It 
takes only 30 min from the measurement of an uncompensated 
RA beam to a design of an objective map and a completion of 
the closed loop. The beam shape is maintained at near-optimum 
condition in daily operations by rerunning the closed loop. 

The beam uniformity achieved in the RA stage is not 
degraded as the beam passes through the next amplifier, 

which is the disk amplifier. The profile of a 39-J beam at the 
output of the disk amplifier near an image plane is shown in 
Fig. 139.48. Improvement in beam uniformity helps to operate 
the system under safe conditions by keeping the maximum flu-
ence below the damage threshold of the compressor gratings. 
The maximum fluence of this beam is 1.1 J/cm2, whereas the 
damage threshold of the grating is 1.5 J/cm2 at 10 ps measured 
by N-on-1 tests.
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Figure 139.48
Beam profile of the disk-amplifier output near an image plane. The energy in 
the beam is 39 J and the full width at half maximum is 70 mm.

Conclusions
The previous carrier-beam–shaping method using an SLM 

has been improved in both open-loop and closed-loop algo-
rithms. The improvements to the open-loop algorithm are based 
on using a measured transmission function rather than a theo-
retical function. The measured function can still be expressed 
as a simple analytic function with three parameters specific to 
the device and the carrier type. A new search method dubbed 
as the constant maximum-derivative Newton method improves 
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Figure 139.47
Precompensated beam profile (a) before and (b) after 
amplification through the RA. The lower bottom cor-
ners of the beam are attenuated before amplification 
and become even after amplification.
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the closed-loop algorithm in terms of convergence stability 
and speed. The details of both wavefront- and fluence-shaping 
closed-loop algorithms were summarized in Eqs. (16) and (17). 
A new method of carrier-beam shaping using a sawtooth carrier 
and the first-order diffraction as the main beam was explored. 
It has a fail-safe feature and higher beam contrast, which might 
be useful in some applications. 

The beam-shaping system was implemented in a multi-
terawatt OPCPA laser. The gain precompensation of a 200-mJ, 
2.5-ns OPCPA laser beam improves the beam uniformity of 
the next-stage amplification. The objective map for the pre-
compensation is designed based on pre- and post-amplification 
beam profiles. The improved uniformity in the precompensated 
amplified beam is striking in that it is better than the unam-
plified OPCPA input beam. The improved uniformity in the 
amplified beam through the RA with the help of beam shaping 
allows for a safer energy ramp in the next-stage boost amplifier 
and a better protection of the gratings in the pulse compressor. 
The best beam shape can be maintained thanks to the dynamic 
adjustability of the beam shaper regardless of the small daily 
changes in the OPCPA beam profile and the gain response in 
the rod amplifier. 

Other important issues were also addressed in applying the 
SLM-based beam-shaping system to a high-energy laser. The 
device can be run safely below the damage threshold even at 
full OPCPA energy by utilizing the entire available SLM area. 
This is done by anamorphically imaging a square input beam 
onto the rectangular area of the SLM. The prepulse coming 
from the SLM’s front surface, which adversely affects a solid-
target experiment, was eliminated by using a customized 
wedged cover glass. 

With future improvements in the damage threshold and the 
bandwidth of a liquid crystal device that can be used with the 
carrier-beam–shaping method, a beam-shaping system similar 
to the one described in this article may find a broader applica-
tion in improving laser performance. 

ACKNOWLEDGMENT 
This material is based upon work supported by the Department of 

Energy National Nuclear Security Administration under Award Number 
DE-NA0001944, the University of Rochester, and the New York State Energy 
Research and Development Authority. The support of DOE does not constitute 
an endorsement by DOE of the views expressed in this paper.

REFERENCES 

 1. V. Bagnoud and J. D. Zuegel, Opt. Lett. 29, 295 (2004).

 2. S.-W. Bahk, E. Fess, B. E. Kruschwitz, and J. D. Zuegel, Opt. Express 
18, 9151 (2010).

 3. M. Barczys, S.-W. Bahk, M. Spilatro, D. Coppenbarger, E. Hill, T. H. 
Hinterman, R. W. Kidder, J. Puth, T. Touris, and J. D. Zuegel, in High 
Power Lasers for Fusion Research II, edited by A. A. S. Awwal (SPIE, 
Bellingham, WA, 2013), Vol. 8602, Paper 86020F.

 4. C. Dorrer and J. D. Zuegel, J. Opt. Soc. Am. B 24, 1268 (2007).

 5. J. Heebner et al., in High Power Lasers for Fusion Research, edited 
by A. A. S. Awwal, A. M. Dunne, H. Azechi, and B. E. Kruschwitz 
(SPIE, Bellingham, WA, 2011), Vol. 7916, Paper 79160H.

 6. S.-W. Bahk, J. D. Zuegel, J. R. Fienup, C. C. Widmayer, and J. Heebner, 
Appl. Opt. 47, 6586 (2008).

 7. M. J. Guardalben and L. J. Waxer, in High Power Lasers for Fusion 
Research, edited by A. A. S. Awwal, A. M. Dunne, H. Azechi, and B. E. 
Kruschwitz (SPIE, Bellingham, WA, 2011), Vol. 7916, Paper 79160G.

 8. T. Zhao et al., J. Mod. Opt. 60, 109 (2012).

 9. S. Ngcobo et al., Nat. Commun. 4, 2289 (2013).

 10. V. Bagnoud, J. Puth, I. Begishev, M. Guardalben, J. D. Zuegel, N. Forget, 
and C. Le Blanc, in Conference on Lasers and Electro-Optics/Quantum 
Electronics and Laser Science and Photonic Applications, Systems 
and Technologies, Technical Digest (CD) (Optical Society of America, 
Washington, DC, 2005), Paper JFA1.

 11. C. Dorrer, I. A. Begishev, A. V. Okishev, and J. D. Zuegel, Opt. Lett. 
32, 2143 (2007).


