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The parametric resonance of oscillators or waves is an effect 
that exists in areas of physics as diverse as geophysical fluid 
dynamics and galactic dynamics. Instabilities caused by the 
parametric excitation of waves in plasmas resulting from the 
presence of large-amplitude electromagnetic waves are of 
immediate concern to inertial confinement fusion (ICF),1,2 
high-energy-density physics (HEDP),3 and ionospheric modi-
fication experiments.4 Most theoretical and numerical works to 
date have assumed that instability is driven by a single electro-
magnetic (EM) pump wave, despite the fact that almost all ICF 
and HEDP experiments overlap many beams. How instability is 
modified when multiple pump waves are present is an issue of 
practical and theoretical interest. Recent indirect-drive experi-
ments at the National Ignition Facility (NIF) (where 96 beams 
overlap near each of the two laser entrance holes of a plasma-
filled hohlraum) are examples that highlight the importance of 
cooperative, multibeam parametric instability. In these experi-
ments a multibeam parametric instability known as cross-beam 
energy transfer (CBET) was shown to have a dramatic effect 
on implosion symmetry and target performance.5,6 In direct-
drive ICF, where the fusion target is directly irradiated by many 
overlapping laser beams, two-plasmon decay (TPD) can occur. 
This problem has been studied for 40+ years, but there has been 
a strong resurgence of interest because of ignition-scale experi-
ments on the NIF. TPD is important because it can generate hot 
electrons, which represent a preheat risk to the target.7 TPD is a 
three-wave decay instability in which an EM wave of frequency 
~0 and wave vector k0

v  decays into two electrostatic Langmuir 
waves (LW’s), satisfying the resonance conditions ~0 = ~ + ~l 
and ,k k k0 + + lv v v  where ~, ~l, and ,kv  klv  are the frequencies and 
wave vectors of the decay LW’s, respectively. This instability 
can occur in the coronal plasma at electron densities close to 
the quarter-critical density ,n 4c  where n m e40

2 2
c e~ r= _ i9 C 

is the electron density at which EM waves are reflected. Here, 
e and me are the electron charge and mass, respectively.

In this article we present a linear three-dimensional (3-D) 
numerical stability analysis of TPD in an inhomogeneous 
plasma driven by multiple laser beams. This is followed by an 
investigation of the subsequent nonlinear evolution, where non-

linearity enters by the coupling of the LW’s to low-frequency 
density perturbations. This model was in part motivated by a 
favorable comparison of the results with more-detailed, fully 
kinetic calculations in regimes where they can be compared 
(i.e., in two spatial dimensions).8 The existence of two forms 
of cooperative multibeam TPD instability is demonstrated. 
One form shares short-wavelength, high-group-velocity, col-
lective (or common) LW’s that convectively saturate (i.e., the 
waves undergo a finite spatial amplification),6 while the other is 
associated with shared long-wavelength, small-group-velocity 
LW’s and is absolutely unstable (i.e., the waves grow in time). 
The identification of an absolutely unstable collective mode of 
instability is a new discovery. Furthermore, it is shown to have 
the lowest threshold in most cases. The presence of absolute 
instability with a low threshold renders the TPD an inherently 
nonlinear problem.

The linear stability of multibeam TPD can be investigated 
by solving a linearized equation for the envelope of the elec-
trostatic field:9,10
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The quantity E1
v  is the complex temporal envelope of the 

real electrostatic field / , . ,expE E x t i t1 2 c.c1 pe- ~= +v v v_ _i i9 C  
where enveloping is carried out at the plasma frequency ~pe = 
(4rn0e2/me)1/2 evaluated at the density n0 = 0.23 nc. In Eq. (1), 
D ut t 0$2 d/ + v_ i is the convective derivative for a plasma with 
the flow velocity u0

v  (= 0 here). In the absence of EM pump 
waves, the free solutions to Eq. (1) are LW’s that propagate 
in a density profile whose deviation from n0 is given by dN 
(dN % n0). [It has been assumed that the inhomogeneity is 
linear (dN = n0x/Ln) and the direction of its gradient defines 
the x axis.] LW’s of wave number k have the group velocity 

,V k3 vg
2
e pe~=  where T mve e e=  is the electron thermal 

velocity, and their amplitudes damp at the rate oe = ocoll + cL, 
which is the sum of the collisional ocoll and Landau-damping 
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cL contributions. The EM field corresponding to the inci-
dent laser light is enveloped around twice ~pe and further 
decomposed into N, coherent, linearly polarized plane waves 

exp iEi 1=E k x t, , i0 0 0i i -$ X= Nv v v` j/  having frequencies ~0,i, 
wave vectors k ,0 i

v , and vacuum intensities .I c E 8,i 0
2

i r= v _ i  
The quantity Xi = ~0,i-2~pe represents the mismatch for each 
beam, where .max 2i pe% ~X` j  The first term on the right-
hand side of Eq. (1) is the longitudinal part of the nonlinear 
current, which is the origin of TPD. The term SE is a time-
random-phase Čerenkov noise source that has been described 
in Russell et al.10

A series of numerical calculations were carried out to solve 
Eq. (1) on a uniform 1024 # 512 # 512 Cartesian grid (in the x, y, 
and z directions, respectively) using a 3-D generalization of the 
pseudospectral method that has been described previously.9,10 
In these calculations, the electron temperature and density scale 
length were held constant (Te = 2 keV, Ln = 150 nm), while 
the total overlapped intensities I Iii 1tot / =

Na k/  was varied for 
various configurations of N = 1, 2, 4, and 6 beams of 0.351-nm-
wavelength light. For each beam configuration, the single-beam 
intensities Ii and frequencies ~0,i were taken to be equal to one 
another, and  the beam wave vectors were distributed sym-
metrically to fall on the surface of a right circular cone with 
a 27° half-angle whose cone axis defines the x direction (see 
e.g., inset to Fig. 138.29). This choice of wave vectors was made 
because beams are distributed in well-defined cones on large 
laser systems such as OMEGA11 and the NIF.12 The simulation 
box length in the density-gradient direction (x) was chosen to 
include densities in the range of 0.19 to 0.27 nc (Lx = 52 nm). 
The length in the two transverse dimensions was chosen to be 
Ly = Lz = 26 nm.

Figure 138.28 shows a two-dimensional (2-D) slice of the 
LW intensity spectrum ,E k t1

2v̂ h  in the kz = 0 plane during 
the linear growth phase (averaged over times t = 2.4 to 4.2 ps) 
for a two-beam (N = 2) calculation. The EM wave vectors and 
electric-field vectors (polarization) of the two beams lie in 
this plane, which is the plane of maximum growth. The over-
lapped intensity Itot = 6 # 1014 W/cm2 was chosen to be above 
the numerically determined threshold for absolute growth. 
In Fig. 138.28, the bright “doublets” at the spectral locations 
centered on wave vectors kk . . , . ,0 8 0 4 0 0!v ^ h  and , ,k 0 0 0+v ^ h 
correspond to temporally unstable (growing) decay modes 
that are resonant at ne = 0.238 nc. This occurs even though 
each beam is individually below the threshold for absolute 
growth.13 This cooperative mode of absolutely unstable TPD 
is analogous to the absolutely unstable modes seen in single-
beam TPD, where the pump decays into one LW with k k0+v v  

and another with ,k k!= =
v v  where .k0%=k

v v  In the two-beam 
case, cooperation occurs because the long-wavelength decays 
near , ,k 0 0 0.v ^ h can be shared between beams. The other 
local maxima in ,E k t1

2v_ i  located near . , ,k k1 5 0 0 0=v ^ h  and 
. ,0 4. ,k k0 6 0 0- !=v ^ h  are convectively saturated (i.e., not 

growing) decays that are resonant at ne = 0.245 nc. These cor-
respond to convective multibeam common waves that have 
been described previously6,14 and the “triad” modes discussed 
in Refs. 10, 15, and 16. The convective gain is greatest for 
spectral locations where the single-beam homogeneous growth-
rate curves (dashed hyperbolas in Fig. 138.28) intersect [the 
maxima at . ,0 4. ,k k0 6 0 0- !=v ^ h  correspond to the daughter 
waves that are not shared]. The maximum convective gain at 
the absolute threshold intensity has been computed numerically 
by estimating the enhancement of the saturated wave intensity 
above the steady-state noise level supported by SE in Eq. (1). 
The behavior described above for two beams is quite generic. 
Figure 138.29 shows ,E k t1

2v_ i  on the planes ky = 0 and kz = 0 
for a four-beam calculation for the same plasma conditions as 
in Fig. 138.28. The beams are polarized predominantly in the 
y direction (signified by the symbol “<”) as shown in the inset. 
The absolutely unstable modes are not restricted to a single 
plane. The bright spectral features near .0 41.0,k k0 0!=v ^ h  
and . ,0 2. ,k k0 2 0 0- !=v ^ h  are temporally unstable and are 
again absolute multibeam modes. The other features in the 

Figure 138.28
The Langmuir wave (LW) spectrum t, , ,E k k k t0x y z1

2=^ h  averaged over 
times t = 2.4 to 4.2 ps. The two electromagnetic (EM) wave vectors k ,0 1

v  
(green arrow) and k ,0 2

v  (white arrow) and their polarization vectors lie in the 
plane shown (kz = 0) (i.e., p polarization). The dashed green (white) hyperbo-
las correspond to the maximum single-beam homogeneous growth rate for 
Beam 1 (2) and the red circle is the Landau cutoff .k 0 25Dem =v  (see the text 
for the remaining parameters).
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spectrum are convectively saturated. The red circles indicate 
the Landau cutoff.

The threshold intensity for the onset of absolute instability 
is found by first extracting the growth rate of the most-unstable 
mode, which does not saturate convectively, for a range of 
intensities and then finding the intensity corresponding to zero 
growth by extrapolation. The thresholds for collective absolute 
TPD instability for various configurations of N = 1, 2, 4, and 
6 beams are summarized in Fig. 138.30. For each configuration, 
there are multiple possibilities for the polarization state: “p” 
and “s” correspond to the one- and two-beam configurations, 
where the polarization is in, or out of, the plane of incidence, 
respectively; “rad” and “tan” refer to polarizations where the 
electric-field vectors are either radially or tangentially oriented 
with respect to the circle that forms the base of the cone contain-
ing the beam wave vectors (see inset to Fig.138.29); the state 
signified as “<” has been defined above. The thresholds have 
been quantified by normalizing the intensity of an individual 
beam for a given configuration I I Ns tot=  by the independent 
(single) beam absolute threshold given by Simon et al.13 For 
one beam (N = 1) at normal incidence (i = 0°), the Simon 
threshold13 is recovered (as expected). [Notice that the thresh-
old is lowered when the angle of incidence is increased to i = 
27° (triangular marker for N = 1 in Fig. 138.30). The effect of 

oblique incidence was not described in Ref. 13 and we defer 
a discussion of this effect to a future publication.] The coop-
erative nature of the instability is revealed for N = 2: for both 
s and p polarizations, the individual (single) beam intensity 
at threshold (Is )thr is significantly lower than the expected 
independent beam value (dashed line)—the importance of 
the effect increasing with the number of beams. Rotating the 
polarizations of the two beams so as to be orthogonal (“9” 
in Fig. 138.30) eliminates the cooperation. The overlapping 
beams are parametrically unstable (absolutely) even though 
the threshold intensity for individual beams is not exceeded. 
The solid curve indicates maximum cooperation (where the 
collection of beams effectively acts as a single beam with the 
combined intensity). The numerically estimated maximum 
gains of the convectively saturated common modes (cf., e.g., 
Fig. 138.28) at the onset of absolute instability are shown in 
red. These gains are consistent with earlier work.6,17,18 In 
most cases, this gain G is small (G K 2r), meaning that the 
threshold for the collective absolute instability is lower than 
that for the convective common waves. The regime of linear 
spatial amplification is therefore very restricted. Above the 
absolute threshold there exists a competition between the two 
modes of cooperative instability, which can be addressed by 
only a nonlinear theory.
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Normalized single-beam threshold intensities (Is)thr for absolute instabil-
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indicated) for various polarization states (see text). The red numbers are the 
maximum convective gains evaluated at the absolute threshold.
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Figure 138.29
Slices of the LW spectrum t,E k t1

2v_ i  (averaged over times t = 1.0 to 2.0  ps) 
in the planes ky = 0 and kz = 0 for a four-beam calculation (< polarization). The 
beam geometry and polarization are shown in the inset.
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The dominant mechanisms thought to be responsible for 
the nonlinear saturation of TPD [weak turbulence effects such 
as the Langmuir decay instability (LDI),8,19 profile modifica-
tion,8 and the strong turbulence effects of cavitation and LW 
collapse10] are accounted for by the substitution dN $ dN + 
dn in Eq. (1), where the low-frequency plasma response dn 
evolves according to

.D D c n
m

Z E E2
16 4

1
t t s
2 2 2 2

1
2

0
2

i
i

-% d do d
r

+ = +v va ck m  (2)

Here c ZT m T ZT1 3/ /1 2 1 2
s e i i e= +` `j j  is the speed of ion-

acoustic waves that damp with the rate oi, where mi, Ti, and Z 
are the ion mass, temperature, and charge, respectively. The 
first term on the right-hand side describes the low-frequency 
ponderomotive forces of Langmuir and electromagnetic fluc-
tuations. Together, Eq. (1), the substitution dN $ dN + dn, 
and Eq. (2) constitute the extended Zakharov model of TPD, 
previously described in Refs. 9, 10, 16, and 20, and are now 
generalized to three dimensions. In the context of this turbu-
lence model where the initial ion-acoustic noise is negligible 
[i.e., no noise term in Eq. (2)], three regimes of cooperative TPD 
behavior have been identified: (1) sI I I I<s abs/ thr

u u] g7 A  [Iabs
u  is 

the threshold for collective absolute instability (Fig. 138.30)], 
where the LW spectrum is dominated by large-k common 
waves whose intensities are amplified spatially by a gain, which 
is numerically determined to be small G K 3 to 5 (red numbers 
in Fig. 138.30) and consistent with the standard Rosenbluth 
expression;6 (2) I Iabs&u u —all unstable modes grow and saturate 
nonlinearly (the nonlinear development in this case has been 
described in terms of cavitating Langmuir turbulence and 
investigated in Ref. 16); and (3) the intermediate regime .I IabsLu u  
The intermediate regime is of direct relevance to spherical and 
planar target experiments at the Omega Laser Facility,6,21,22 
and it displays interesting physical effects.

Figure 138.31 shows the nonlinear temporal development of 
the LW intensity for the two-beam p-polarized case in the inter-
mediate regime I 1Lû h (same parameters as Fig. 138.28). The 
other cases shown in Fig. 138.30 exhibit very similar behavior 
and are not shown. The transverse (y,z) average of the LW 
intensity ,E x t1

2
=

v ^ h is shown as a function of the x coordinate 
and time. At early times, growth is linear. The LW Fourier spec-
trum during this phase (indicated by the lower shaded region) 
is shown in Fig. 138.28. The previously identified absolute 
and convective cooperative modes occur at different spatial 
locations (densities), as indicated by the blue and red dashed 
lines, are . , .n n 0 283 0 245e c =  in the figure, respectively. The 
blue (red) dashed vertical lines indicate the evolution of the 
absolute (convective) modes as a function of time (see inset). At 

approximately t = 5 ps, the absolutely unstable modes saturate 
nonlinearly, producing large density-profile modifications and 
radiating large-amplitude LW’s. These waves propagate down 
the density profile [toward lower densities (smaller x)] with 
time, generating a wave of turbulence (consistent with previ-
ous studies) whose effects can be seen in the figure. When this 
turbulence reaches a particular location, growth is restored to 
the modes that were previously convectively saturated (for x = 
26 nm, this occurs at t + 10 ps). This was verified by perform-
ing a linear analysis on the perturbed profiles. The restoration 
of absolute growth in a convectively unstable parametric insta-
bility (i.e., fragility of the Rosenbluth result) caused by noise or 
turbulence has been noted previously (cf., e.g., Ref. 23). Here, 
it is triggered by the nonlinearity of the absolute instability. The 
result is that, at late times (e.g., the upper shaded region in the 
figure), the LW spectrum is much broader and more intense 
(see Fig. 138.32) than during the linear phase (Fig. 138.28). The 
late-time turbulent spectrum is dominated by large-k shared 
(common) modes with intensities that are greatly in excess of 
those predicted by the linear analysis.

These results will be of fundamental importance to direct-
drive ICF experiments on the NIF, where many laser beams 
overlap on the target (and a knowledge of TPD stability prop-
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erties is essential) and are an important contribution to under-
standing cooperative parametric instabilities in general. The 
results obtained with this model may provide an interpretation 
of experiments that infer the coexistence of large- and small-
wave-number TPD LW’s via half- and three-halves-harmonic 
emission.22,24 They might also explain the observation of 
strong TPD hot-electron production in multibeam OMEGA EP 
experiments, even though the predicted common-wave convec-
tive gains are small.6,25
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