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Introduction
High-energy laser systems have been developed for explor-
ing regimes of high-intensity interaction of light with matter, 
e.g., plasma physics, astrophysics, and the generation of par-
ticles. One application of these lasers is inertial confinement 
fusion (ICF)—a strategy for producing energy by compressing 
and heating capsules filled with hydrogen isotopes and ignit-
ing fusion reactions that release a large number of energetic 
neutrons.1,2 Laser systems developed for ICF are large-scale 
complex optical systems that must produce temporally shaped 
optical pulses containing megajoules of energy in the ultraviolet 
(UV).3,4 The laser–target interaction is an intensity-dependent 
process that requires the time-dependent power of the optical 
pulses to be precisely shaped. Temporal phase modulation must 
be added to prevent damage to the laser system and smooth out 
intensity variations at the surface of the target. High-intensity 
narrowband optical waves lead to stimulated Brillouin scatter-
ing (SBS) in optical components with potentially catastrophic 
consequences.5 The growth of SBS waves is inhibited by 
increasing the bandwidth of the optical wave, typically by 
phase modulation in the low-energy front end to generate mul-
tiple sidebands. Phase modulation at a few GHz’s with index 
modulation sufficient to create approximately ten sidebands is 
used on systems like the National Ignition Facility (NIF) and 
the Laser Mégajoule Facility (LMJ).5–7 Uniform compression 
of the target is required to reach the conditions for fusion in the 
target core, but such compression is hindered by instabilities.8 
Smoothing by spectral dispersion (SSD) reduces the fluence 
variations of individual beams to produce a target irradiation 
that is spatially uniform on a time-averaged basis.9–11 SSD uses 
temporal phase modulation to induce a time-dependent instan-
taneous frequency on the optical pulse. A phase plate placed 
before the focusing component at the end of the laser system 
creates a highly modulated far field composed of speckles.12 A 
diffractive component in the laser system ensures that the far-
field position depends on the optical frequency. The combination 
of time-varying instantaneous frequency, frequency-dependent 
far-field position, and highly modulated far field is used to obtain 
a uniform target illumination when averaged over the duration of 
the optical pulse. The NIF and the LMJ were built for indirect 

drive—an approach to ICF where the target is compressed by 
x rays generated when the optical pulses interact with the walls 
of a hohlraum.1 In this approach, phase modulation at a single 
frequency with a modulation index of a few radians is sufficient 
for SSD when implemented with angular dispersion in only one 
direction. In the direct-drive approach to ICF, the optical pulses 
directly compress the target.2 If SSD is implemented in only 
one direction, modulation at multiple frequencies is required, 
at least during the low-energy portion of the pulse shape.11,13 
Theoretical studies and experimental demonstration of a system 
combining pulses with three high-frequency phase modulations 
and pulses with SBSS (SBS suppression) and single-frequency 
SSD have been performed.14–16 Optical pulses with multiple 
temporal phase modulations are routinely used on these high-
energy laser facilities for reducing the threat of SBS and opti-
mizing the target illumination by SSD.

A known issue when using phase-modulated optical pulses 
is the conversion of frequency modulation to amplitude 
modulation (FM-to-AM conversion).7,17–19 A pulse of constant 
power with a single sinusoidal temporal phase modulation at 
frequency f has spectral sidebands at frequencies separated by 
f with spectral density given by Bessel functions of the first 
kind and precise phase relations.20 When the spectral ampli-
tude and/or phase of these sidebands are modified, the power 
becomes time dependent, e.g., it has a sinusoidal modulation 
at frequency  f. A modification of the time-varying power of 
the shaped pulse might be detrimental to the interaction of the 
pulse with the target. It can also lead to optical damage in the 
laser system by increasing the peak power beyond the damage 
threshold of optical components. Sources of FM-to-AM conver-
sion include chromatic dispersion, wavelength-dependent gain 
of laser amplifiers, generation of low-energy replicas interfering 
with the main signal, and spectral clipping. Studies of FM-to-
AM conversion in pulses with a single phase modulation are 
available in the literature. Examples of FM-to-AM conversion 
of signals with SBSS at 2 GHz and SSD at 14.25 GHz have been 
presented in the context of the LMJ,7 but no general study for 
pulses with multiple phase modulation (multi-FM) has been 
published. This study is highly relevant to the operation of cur-

Spectral and Temporal Properties of Optical Signals  
with Multiple Sinusoidal Phase Modulations



Spectral and Temporal Properties of Optical Signals with Multiple Sinusoidal Phase Modulations

LLE Review, Volume 136 223

rent systems and engineering of future systems because these 
systems typically use phase modulation at multiple frequencies. 

This article first presents a statistical study of the optical 
spectrum of multi-FM signals. The optical spectrum of these 
signals is shown to converge to a normal distribution using 
an analogy with the statistical properties of the probability 
density function of the sum of independently distributed 
variables, which allows one to use the central limit theorem. 
Convergence of the frequency integral of the spectral density 
to the cumulative density function of the normal distribution 
makes it possible to predict the frequency range containing 
a given fraction of the total energy. The statistical study is 
followed by general derivations of FM-to-AM conversion in 
optical signals with multiple phase modulations from linear 
and quadratic spectral amplitude modulation, for example, 
resulting from spectral filters and optical amplifiers and from 
quadratic and cubic spectral phase modulations, for example, 
caused by chromatic dispersion in optical fibers in the front end. 
These impairments are inherently present in high-energy laser 
systems because of their architecture and component avail-
ability. Compensation subsystems must be developed so that 
the transfer function of the entire laser system does not lead to 
FM-to-AM conversion. These compensators are, for example, 
Lyot-type filters that compensate for the gain narrowing in a 
Nd:glass amplifier and a grating compressor that compensates 
for chromatic dispersion.6,16 The design and performance of 
these subsystems are intrinsically linked to understanding the 
modulation magnitude in critical parts of the system where 
optical damage might occur. FM-to-AM conversion caused 
by the nonlinear frequency conversion from the infrared to 
the ultraviolet is not treated but could be the subject of further 
studies based on what is already known for single-frequency 
modulation.7,18,19,21 FM-to-AM conversion from free-space 
propagation close to image planes of the diffraction grating 
used for SSD is described by a quadratic spectral phase7,14 

and can be treated with the same formalism. Another source 
of FM-to-AM conversion in high-energy laser systems is the 
interference of multiple replicas of the main pulse generated 
during amplification in the fiber front end.17,22 This is inherent 
to the propagation of polarized signals in polarization-main-
taining optical fibers having a finite extinction ratio, but the 
associated AM can be significantly reduced via engineering, 
in particular using optical fibers that transmit light along only 
one well-defined polarization17 or alternating the orientation 
of the fast and slow axes of the optical fibers.22

For the impairments considered in this article, the amplitude 
modulation is evaluated by two metrics without frequency 

resolution: peak-to-valley (PV) and root-mean-square (rms) 
modulation on the temporal pulse, and by the PV modulation 
at specific frequencies. The specific frequencies are the indi-
vidual modulation frequencies fn in the case of linear amplitude 
modulation and quadratic phase modulation. They are the sums 
and differences of modulation frequencies fi!fj for quadratic 
amplitude modulation and cubic phase modulation. Evaluating 
the amplitude modulation on the temporal pulse is crucial to 
setting allowable limits for individual impairments. Evaluating 
the modulation at specific frequencies helps to interpret time-
resolved measurements provided by high-bandwidth diagnos-
tics. Bandwidth-limited measurements of the instantaneous 
power can be interpolated at high frequencies not measured 
by the diagnostic. It is conceivable that limiting impairments 
can be identified from the spectral signature of the measured 
relative modulations at different frequencies.

The following sections (1) present general notations and 
definitions; (2) present a statistical approach to predicting the 
spectrum of signals with multiple sinusoidal phase modulations 
and frequency intervals containing a given fraction of the total 
energy; (3) describe FM-to-AM conversion in the presence of 
linear amplitude modulation and quadratic phase modulation, 
which leads to amplitude modulation at the phase-modulation 
frequencies; (4) detail FM-to-AM conversion in the presence 
of quadratic amplitude modulation and cubic phase modula-
tion, which leads to amplitude modulation at combinations of 
the phase-modulation frequencies; and (5) present additional 
considerations and conclusions.

General Considerations
1.	 Definitions

An initially monochromatic field at the frequency ~0 is 
modulated at multiple microwave frequencies f 2j j rX=  
with respective modulation index mj. For simplification, the 
oscillating term resulting from ~0, present in all the temporal 
fields, is not written, and spectral fields are consistently plotted 
after translation by ~0; i.e., with a zero carrier frequency. The 
phase modulations are co-phased at t = 0 for the derivation of 
FM-to-AM conversion. One reason for doing so is that for a 
small number of modulation frequencies, one can identify a 
time around which the sinusoidal modulations are co-phased, 
i.e., reach a maximum. This is justified by the absence of 
correlation for the values of sinusoidal modulations at non-
commensurate frequencies. As such, the probability that one 
reaches a maximum around a given time is uncorrelated to the 
probability that the others reach a maximum around the same 
time, and the probability that they are all within some range 
of their maximal value at a given time is the product of the 



Spectral and Temporal Properties of Optical Signals with Multiple Sinusoidal Phase Modulations

LLE Review, Volume 136224

individual probability, which is nonzero. Various simulations 
with co-phasing and with random relative phases on monochro-
matic fields have led to similar results, and the relative phase 
of the uncorrelated sinusoidal modulations generally does not 
play a significant role when calculating the overall amplitude 
modulation in a PV and rms sense. When using a pulse of finite 
duration, the relative phases of the temporal phase modulations 
and their timing relative to the power of the pulse play a role, 
e.g., the maximum PV modulation might not be reached over 
the finite time interval where the pulse power is nonzero. The 
derivations presented here correspond to a worst-case scenario, 
where the amplitude modulations are considered over a very 
large temporal range. With these conventions, the temporal 
field is simply written as

	 .exp cosE t i m tj j
j

X=_ ai k> H/ 	 (1)

2.	 Parameters for Derivations and Simulations
The analytical derivations are performed for an arbitrary 

number of noncommensurate microwave frequencies of arbi-
trary modulation index with impairments leading to a small 
change in the electric field of the optical pulse, i.e., inducing 
a small amplitude modulation. This is the useful range for 
application to high-energy lasers since the impairments and 
amplitude modulation must be minimized. Signals with com-
mensurate frequencies have been studied in the context of 
providing a uniform spectral density over a given bandwidth, 
but the resulting on-target smoothing might be impacted by 
resonances.23 These signals should be the subject of a separate 
study if they find an application for beam smoothing. Simu-
lations have been performed with the parameters defined in 
Ref. 16 for the so-called picket channel. The corresponding 
frequencies and modulation indices are given in Table 136.III 
and a detail of the phase modulations is shown in Fig. 136.19(a). 
The optical signal obtained by phase modulation with these 
parameters is called the “test signal” for the remainder of this 

article. These parameters were determined by simulations to 
optimize the on-target smoothing, including the engineering 
constraints related to potential implementation on the NIF.13 

Small relative changes to these frequencies would not affect 
the smoothing, but they have been chosen as multiples of a 
reference clock available at the Omega Laser Facility because 
this allows them to be temporally synchronized to the optical 
pulse. The microwave frequencies are commensurate, but the 
integer multiples linking them are so large that no effect of 
commensurability has been observed in simulations. The result-
ing optical spectrum is shown in Fig. 136.19(b). A Gaussian 
spectral density with an identical rms bandwidth (50 GHz) has 
been plotted, as discussed in the next section.
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Figure 136.19
(a) Phase modulations used for simulations with parameters given in 
Table 136.III ( f1, f2, and f3 plotted in red, green, and blue, respectively). 
(b) Optical spectrum resulting from these phase modulations applied to a 
monochromatic field (black solid line) and Gaussian spectrum with identical 
root mean square (rms) bandwidth (red dashed line).

The considered spectral impairments are linear amplitude 
modulation (parameter l), quadratic amplitude modulation 
(parameter q), quadratic phase modulation (parameter {2), and 
cubic phase modulation (parameter {3), with transfer function 
given, respectively, by

Table 136.III:	 Characteristics of the phase modulations used for 
simulations. All frequencies are multiples of the 
reference frequency fref = 37.998935 MHz.

Modulation
Frequency 

(GHz)
Multiple of 

fref

Modulation 
index (rad)

Multi-FM-1 f1 = 21.165 557 0.45

Multi-FM-2 f2 = 22.837 601 1.04

Multi-FM-3 f3 = 31.881 839 2.07
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	 ,l1x ~ ~= +` j 	 (2)

	 ,q1 2
x ~ ~= +` j 	 (3)

	 ,exp i 22
2

x ~ { ~=` bj l 	 (4)

	 .exp i 63
3

x ~ { ~=` bj l 	 (5)

The range of impairment parameters for simulations was arbi-
trarily chosen between 0 and a maximal value calculated so 
that for amplitude impairments, the magnitude of the transfer 
function reaches the value 1.2 at f = 100 GHz and for phase 
impairments, the phase of the transfer function reaches the 
value 0.2 rad at f = 100 GHz. The parameters l, q, {2, and {3 
are chosen positive to simplify the equations.

Spectrum and Bandwidth of Signals  
with Multiple Phase Modulations
1.	 Spectrum and Bandwidth of Signal  

with Single Phase Modulation
Signals with a single temporal phase modulation are widely 

used in telecommunications and their spectral properties are 
well documented.20 The optical spectrum of a signal with 
phase modulation at frequency X with index m is composed of 
discrete sidebands at the frequencies nX and power given by 
the Bessel function of the first kind .J mn

2` j  According to 
Carson’s rule, 98% of the energy is contained in the bandwidth

	 .m2 1BW %98 X= +^ h 	 (6)

Knowledge of the spectral properties of signals with multiple 
phase modulations can be obtained using statistical argu-
ments, as shown in this section. One approach for obtaining 
an operational definition of the bandwidth of these signals is to 
use the bandwidth of the spectrum , , , ,S m E m~ ~X X= 2u_ _i i  
in the rms sense,

, , , , , ,m S m S mBW d d2
rms ~ ~ ~ ~ ~X X X=_ _ _i i i# # 	 (7)

which can be expressed using the properties of the Fourier 
transform as

	 , .m
t
E

t t E t tBW d d
2 2

rms 2
2

X = ' $_ _ _i i i 	 (8)

Equation (8) is straightforward to calculate, resulting in

	 , .m m 2BWrms X X=_ i 	 (9)

2.	 Bandwidth of Signals with Multiple Phase Modulations
Equation (8) can be extended to a signal with multiple phase 

modulations given by Eq. (1):

	 , ,sinm m t tBW dj j j j j
j

2

rms X X X=
c

e
ddb al k> H% / / 	 (10)

where the square can be expanded to give

	

,

.sin sin

m

m m t t t

BW

d
,

j j

j k j k j k
j k

rms X

X X X X

=

$

b

a `

l

k j

% /

/
	

(11)

For noncommensurate frequencies (Xj,Xk), the integral in 
Eq. (11) is 0, while for j = k, the integral is equal to 1/2, lead-
ing to the expression

	 , .m m 2BW j j j j
j

2 2
rms XX =b l% / / 	 (12)

The rms bandwidth of a signal with multiple noncommensurate 
phase modulations is the root mean square of the individual 
rms bandwidths.

An alternate way to obtain this result is to consider that the 
temporal electric field of a signal with multiple phase modula-
tions is the product of the fields corresponding to individual 
phase modulations. In the spectral domain, this implies that 
the resulting field is the convolution of the individual fields. 
Because the modulation frequencies are not commensurate, the 
optical frequency of each sideband in the resulting spectrum is 
obtained by a unique linear combination of the optical frequen-
cies of the sidebands of the individual fields. The amplitude of 
that sideband in the convolved field is given by a product of the 
amplitudes in each individual field. As a result, the power of 
that sideband is given by a product of the corresponding powers. 
The optical spectrum of the signal with multiple phase modu-
lations is the convolution of the spectra corresponding to the 
individual modulations only when the modulation frequencies 
are non-commensurate. This general result was used in Ref. 7 
for the two particular frequencies corresponding to SBSS and 



Spectral and Temporal Properties of Optical Signals with Multiple Sinusoidal Phase Modulations

LLE Review, Volume 136226

SSD on the LMJ. From the general properties of the Fourier 
transform, it is known that the rms width of a convolution of 
multiple functions is equal to the rms of the individual rms 
widths, which confirms Eq. (12).

3.	 Spectrum of Signals with Multiple Phase Modulations
Obtaining an approximation of the spectrum of a signal with 

multiple phase modulations is important to quantify the energy 
present in a particular frequency interval. A comparison of 
Eqs. (6) and (9) indicates that the rms width and the Carson’s 
rule bandwidth are loosely connected for arbitrary values of 
the modulation index. The rms width is computationally easy 
to use but it is not a precise indicator of the energy fraction 
present in a given frequency interval. One possible strategy 
to obtain useful information about the spectral density of a 
signal given by Eq. (1) is to formally reconsider the property 
that the resulting spectrum is the convolution of the individual 
spectra for modulation parameters (mj, Xj) in light of the prob-
ability theory.

One considers N independent random variables {~j}, where 
each random variable ~j has a probability density function 
(pdf) given by S(~, mj, Xj). Since the modulation frequencies 
are different, the probability density functions are different and 
the variables are not identically distributed. The convolution 
of these spectra, , ,S m j j~ Xa k$ .  is the pdf of the sum of the N 
random variables

	 SN j
j

= ~/ 	

because of the probabilistic independence. The sum of a large 
number of independent and identically distributed variables 
with zero mean is probabilistically described by the central 
limit theorem, which states that the probability density function 
of the sum converges to a normal distribution with variance 
equal to N times the individual variance. This result is true in 
some conditions for the sum of N random variables that are 
independent but not identically distributed: the probability den-
sity function of the sum also converges to a normal distribution 
with variance given by the sum of the individual variances.24 
The sum cumulative distribution function (cdf) converges to 
the cdf of that normal distribution. A sufficient condition for 
convergence is that the third-order moment of the absolute 
value of each individual variable is finite. It is straightforward 
to simulate this quantity for Bessel spectra and conclude that 
this is the case. This makes it possible to conclude that the 
spectrum of the field given by Eq. (1) converges to a Gaussian 
function with standard deviation given by Eq. (12) for a large 

number of modulation frequencies. The normal distribution 
and its cdf are well documented. For a normally distributed 
random variable x with unity standard deviation, the probit 
function, i.e., the quantile function (inverse of the cdf) of the 
normal distribution, yields the quantity xp, defining the interval 

,xp-3A A, corresponding to a statistical probability p (Ref. 25). 
For a Gaussian spectral density of standard deviation v, the 
probit function gives the multiple xp, defining the interval 

, ,xp-3 vC C  containing the fraction p of the signal energy. 
Symmetric intervals [–fp, fp] containing 98% of the energy, are 
considered in this article to be consistent with Carson’s rule for 
a single modulation frequency. Considering the symmetry of 
the normal distribution, the frequency fp is the product of the 
standard deviation by the probit function applied to p = 0.99, 
i.e., fp = 2.326 v.

4.	 Simulations
The optical spectrum of signals with multiple phase modula-

tions has been simulated for a variety of situations. The cumula-
tive distribution function for the test-signal spectrum shown in 
Fig. 136.19(b) is displayed in Fig. 136.20. The cdf of a normal 
distribution with identical rms bandwidth (50 GHz) is also plot-
ted for comparison. The agreement between these two curves 
is good. The cdf calculated from the spectrum reaches 99% at 
~99 GHz, indicating that 98% of the energy is contained in the 
frequency interval 2 # 99 GHz = 198 GHz (note that the cdf is 
by definition an integral starting at ,-3  while the bandwidth 
of interest is defined as a symmetric interval centered at the 
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Figure 136.20
Cumulative density function of the spectrum shown in Fig. 136.19(b) (black 
solid line) and the Gaussian function with identical rms bandwidth (red dashed 
line). The inset is a close-up of the tail of the cumulative density functions at 
high frequencies, where a horizontal dashed line has been added to show the 
frequency values at which the two functions reach 0.99.
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zero frequency). The 98% bandwidth of the Gaussian spectral 
density with rms bandwidth equal to 50 GHz is 2 # 2.326 # 
50 GHz = 233 GHz. The ratio of the actual 98% bandwidth to 
the 98% bandwidth predicted by the normal distribution is t = 
0.85. The inset in Fig. 136.20 displays a close-up of the two 
cumulative density functions at high frequencies, confirming 
the discrepancy for the predicted 98% bandwidth. It is clear 
from this inset that the spectrum of the test signal is more con-
centrated and expands less toward high frequencies. The 17% 
overestimate predicted by the normal distribution is consistent 
with the more-general results obtained below. 

Statistical simulations were performed to quantify the con-
vergence of the spectrum of a multi-FM signal to its Gaussian 
approximation and of the corresponding cdf’s. Figure 136.21 
shows simulation results for the ratio t of the bandwidth con-
taining 98% of the energy calculated from the spectral density 
to the bandwidth containing 98% of the energy assuming that 
the spectrum is Gaussian with standard deviation given by 
Eq. (12). For each number of modulation frequencies N (hori-
zontal axis, from 1 to 10 on the left plots and 10 to 100 on the 
right plots) the standard deviation of the modulation index vm 
was allowed to vary between 1 and 5 (vertical axis). For each 
combination of N and vm, 1000 random draws of the modula-
tion indices and modulation frequencies were made. For each 
draw, the modulation index is normally distributed with stan-
dard deviation vm and the modulation frequencies are initially 
normally distributed with standard deviation equal to 1 but 
are rescaled so that the rms bandwidth of the resulting signal 
is 100 GHz, following Eq. (12). This rescaling allows one to 
standardize the simulation results and necessary sampling in 
the time and frequency domain. Because it would be, in prac-
tice, difficult to co-phase a large number of sinusoidal modula-
tions, the relative phase of the N modulations was chosen as 
a random variable uniformly distributed between 0 and 2r. 
This procedure allows one to map a wide range of multi-FM 
signals. The results displayed in the first row of Fig. 136.21 
are the average values of the ratio t as a function of vm and 
N. For example, GtH = 1 means that the 98% bandwidth of the 
calculated spectrum and Gaussian approximation are on aver-
age the same; values lower than 1 indicate that the Gaussian 
function overestimates the 98% bandwidth. The second row 
of Fig. 136.21 represents the standard deviation of the ratio 
t calculated over the 1000 random draws performed for the 
N modulation frequencies and modulation indices of standard 
deviation vm. 

The optical spectrum of the phase-modulated fields effec-
tively converged to a Gaussian distribution, and the cumulative 

distribution function of the spectrum converged to the corre-
sponding cdf as the number of frequencies was increased. A 
strong correlation between the convergence of the cdf and the 
convergence of GtH toward 1 was observed, making it possible 
to discuss the following general spectral properties in light of 
the bandwidth results presented in Fig. 136.21:

•	 The spectrum approximation by a normal distribution gets 
better as the number of modulation frequencies increases. 
The average value of the ratio t converges to 1 and the 
standard deviation around the average value decreases 
as N increases. This is expected because the central limit 
theorem applies to the sum of a large number of indepen-
dent variables.

•	 The ratio t is in most cases smaller than 1, meaning that 
the calculated spectrum is more concentrated toward lower 
frequencies than its normal approximation. This can be 
explained by the squarish shape of the spectrum of phase-
modulated signals, which leads to more energy concentra-
tion for a given standard deviation. Predicting the spectral 
extent of a multi-FM signal using its rms bandwidth and the 
normal approximation leads to an overestimate.

•	 Small phase-modulation indices lead to a better approxima-
tion than large modulation indices; in particular for vm = 1, 
the normal approximation is good in an average sense even 
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for a small number of modulation frequencies. This is 
caused by the general shape of the spectrum of sinusoidally 
modulated signals: for a single phase modulation with low 
modulation index, the spectrum is close to a bell-shaped 
curve multiplied by a frequency comb at the modulation 
frequencies. Since the individual probability density func-
tions are closer to normal distribution, the convergence of 
the probability density function of the sum of the variables 
to a normal distribution is faster.

•	 The spread of the simulated t relative to the average value is 
smaller as the number of frequencies increases (consequence 
of the central limit theorem) and as the modulation index 
increases for a given number of frequencies. The latter is 
attributed to the larger number of spectral modes resulting 
from larger modulation indices, leading to a smoother cdf 
because the spectral density of individual modes is on aver-
age smaller.

Impairments Leading to FM-to-AM Conversion  
at the Modulation Frequencies
1.	 Linear Spectral Amplitude

A linear spectral modulation corresponds, for example, to 
amplification at a frequency detuned from the maximum of an 
amplifier gain. The corresponding transfer function over the 
bandwidth of the pulse is

	 .l
l

1 1 2.x ~ ~ ~= + +` j 	 (13)

The temporal field after this transfer function is

	 .E E
il

t
E

2 2
2

= +l 	 (14)

With the expression of the initial electric field given by Eq. (1), 
the modulated field is

	 ,sinE t E t
l

m t1 2 j j j
j

X X= +l_ _ ai i k> H/ 	 (15)

and the modulated power at first order in l is

	 .sinP t l m t1 j j j
j

X X= +l _ ai k/ 	 (16)

Equation (16) shows that the modulation on the output pulse is 
at the modulation frequencies Xj with PV amplitude

	 j .lm2PV j jX X=a k 	 (17)

The highest modulation is observed at the frequency for which 
the associated bandwidth mjXj is maximal. With noncom-
mensurate modulation frequencies, there are times when the 
modulations in Eq. (16) are simultaneously close to a maximum 
and other times at which they are simultaneously close to a 
minimum. The PV modulation is given by

	 ,l m2PV j j
j

X= / 	 (18)

and the rms modulation for these uncorrelated sinusoidal 
modulations is given by

	 .l m 2rms j j
j

2 2X= / 	 (19)

Simulation results for the test signal are shown in Figs. 136.22 
and 136.23. Figure 136.22 displays the modulated temporal 
power corresponding to a linear spectral amplitude modulation 
l = 0.44/(100 GHz): it is dominated by the modulation at the 
highest frequency f3 but the influence of other frequencies can 
be seen as the slight modulation of the local power extrema. 
Figure 136.23 compares simulated and analytical results for 
the modulations determined without frequency resolution (PV 
and rms AM) [Eqs. (18) and (19)] and at the three modulation 
frequencies [Eq. (17)]. An excellent agreement is obtained. The 
highest modulation is observed at the frequency f3 since that 
frequency corresponds to the highest product mjXj. 

Figure 136.22
Temporal power after linear spectral amplitude modulation corresponding 
to l = 0.44/(100 GHz).
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2.	 Quadratic Spectral Phase
A quadratic spectral phase is the dominant phase term due 

to the chromatic dispersion of materials, e.g., laser glass and 
optical fibers, as well as the dominant term when propagating 
in a grating compressor. This impairment is represented in the 
spectral domain by the transfer function

	 ,exp i i2 1 22
2

2
2

.x ~ = +{ {~ ~` bj l 	 (20)

which leads to the temporal field

	 .E E i
t

E
2
2

2

2
-

2

2{
=l 	 (21)

With the expression of the initial field given by Eq. (1), the 
resulting field is

	

.
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E t E t m t

i m t
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j j j
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j j j
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X X

=

+

l _ _ a
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k> H

*
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(22)

When calculating the power (i.e., the modulus squared of the 
field), the imaginary component in Eq. (22) leads to a second-
order term in {2. The power is given at first order by

	 .cosP t m t1 j j j
j

2
2-{ X X=l_ ai k/ 	 (23)

A quadratic spectral phase leads to amplitude modulation at 
the frequencies Xj with respective peak-to-valley amplitude

	 .m2PV j j j2
2

{X X=` j 	 (24)

Temporal modulations are observed at the modulation frequen-
cies Xj, as for linear amplitude modulation, but the largest 
modulation corresponds to the frequency having the largest 
product .m j j

2
X  An argument similar to that made about Eq. (16) 

shows that the overall peak-to-valley AM is

	 ,m2PV j j
j

2
2

{ X= / 	 (25)

while the rms AM is given by

	 .m 2rms j j
j

2
2 4{ X= / 	 (26)

Simulation results for quadratic spectral phase modulation are 
shown in Figs. 136.24 and 136.25. Figure 136.24 shows the 
modulated power after second-order dispersion {2 = 1.01 ps2. 
Features similar to those of Fig. 136.22 are observed. Fig-
ure 136.25 shows the excellent agreement between the simu-
lated and analytical results [Eqs. (25) and (26) for the peak-to-
valley and rms AM, and Eq. (24) for the peak-to-valley AM at 

Figure 136.23
(a) Peak-to-valley and rms amplitude modulation (AM) versus magnitude 
of the linear spectral amplitude modulation. (b) Peak-to-valley AM at the 
frequencies fj versus magnitude of the linear spectral amplitude modulation. 
The lines correspond to the simulations and the markers correspond to the 
analytical derivation.
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Figure 136.24
Temporal power after quadratic spectral phase corresponding to {2 = 1.01 ps2.
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each frequency fj ] when the magnitude of the phase modulation 
is modified. The highest temporal modulation is observed at the 
frequency f3 because that frequency corresponds to the largest 
quantity mj j

2
X , considering the parameters in Table 136.III.

3.	 Combination of Linear Spectral Amplitude  
and Quadratic Spectral Phase
Linear amplitude modulation and quadratic temporal phase 

modulation lead to temporal modulation at the frequencies Xj . 
Inspection of Eqs. (16) and (23) shows that the corresponding 
modulations occur in quadrature, each of them being either a 
sine or a cosine of the argument Xj t. It is straightforward to 
show that the peak-to-valley AM at frequency Xj resulting from 
the in-quadrature modulations with respective PV amplitudes 
2lmjXj and m2 j j2

2
{ X  is

	 ,m lm2 2j j j j2
2 2 2

{ X X+b al k 	

i.e.,

	 .m l2PV j j j j2
2 2

{X X X= +a ak k 	 (27)

Since the modulation frequencies are not commensurate, there 
are times at which the extrema of the individual modulations 
are simultaneously reached, leading to the peak-to-valley AM

	 .m l2PV j j
j

j2
2 2

{X X= +a k/ 	 (28)

The rms AM is obtained by considering that the resulting 
temporal power is the sum of uncorrelated sinusoidal functions 
oscillating at Xj with amplitude given by half the PV modula-
tion expressed by Eq. (27). This leads to

	 .m l 2rms j j j
j

2 2
2

2 2{X X= +a k< F/ 	 (29)

Figure 136.26 compares simulated and analytical results 
when the second-order dispersion is {2 = 1.01 ps2 and the 
linear spectral amplitude modulation is modified. Excellent 
agreement is obtained, confirming the fact that Eqs. (27)–(29) 
accurately predict the influence of the combined phase and 
amplitude modulations. Similar agreement was observed when 
scanning the magnitude of the phase modulation for a given 
amplitude modulation.
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Figure 136.26
(a) Peak-to-valley and rms AM versus magnitude of the linear spectral ampli-
tude for {2 = 1.01 ps2. (b) Peak-to-valley AM at the frequencies fj versus mag-
nitude of the linear spectral amplitude for {2 = 1.01 ps2. The lines correspond 
to the simulations and the markers correspond to the analytical derivation.

Impairments Leading to FM-to-AM Conversion  
at Intermodulation Frequencies
1.	 Quadratic Spectral Amplitude

Quadratic amplitude modulation occurs after propagation 
in a component at a frequency corresponding to an amplitude 
externum of the component’s transfer function; for example, 
amplification at the peak of the gain of an amplifier. The cor-
responding transfer function is

	 ,q
q

1 1 2
2 2
.x ~ ~ ~= + +` j 	 (30)

Figure 136.25
(a) Peak-to-valley and rms AM versus magnitude of the quadratic spectral 
phase modulation. (b) Peak-to-valley AM at the frequencies fj versus magni-
tude of the quadratic spectral phase modulation. The lines correspond to the 
simulations and the markers correspond to the analytical derivation.
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leading to the temporal field

	 .E E
q

t

E
2 2

2
-

2

2
=l 	 (31)

The resulting field is
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(32)

where the real component proportional to q between the curled 
brackets will be the main modulation source since the complex 
quantity in the same brackets is squared when calculating the 
optical power. The resulting power, at first order in q, is

	 .sinP t q m t1 j j
j

j

2

X X= +l_ ai k> H/ 	 (33)

When q > 0, the modulated power in Eq. (33) is higher than the 
average power of the signal in the absence of impairment at all 
times. This is explained by the fact that the transfer function 
[Eq. (30)] does not conserve the signal energy. Since one is 
interested in the temporal modulation of the power around its 
average value, and not around its value without impairment, 
AM determinations are scaled by the average power of the 
signal of Eq. (33),

	 .
q

m1 2 j j
j

2 2
X+ / 	

The minimum value of Eq. (33) is 1. The maximum value is 
obtained when all the modulations reach an extremum, and the 
resulting peak-to-valley AM is

	 .q m
q

m1 2PV j j
j

j j
j

2
2 2XX= +

J

L

K
KK

d
N

P

O
OO

n/ / 	 (34)

The rms AM on the resulting power is calculated from Eq. (33), 
leading to

	 .
q

m

q m m m

1 2

8
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	 (35)

Equation (33) can be developed into a sum of terms propor-
tional to sin(Xj t) sin(Xk t). The choice of j = k leads to a term 
oscillating at the frequency 2Xj with PV amplitude .qm j j

2 2
X  

The two terms corresponding to the choice (j,k) and (k,j) with 
j ≠ k lead to modulations at Xj + Xk and Xj – Xk, each of them 
with a PV amplitude 2qmj mk Xj Xk. The resulting AM’s at 
these frequencies are

	 j j j j jqm
q

m2 1 2PV
j

2 2 2 2
X X X= +

J

L

K
KK

a
N

P

O
OO

k / 	 (36)

and

	 j j j j .qm m
q

m2 1 2PV k j k k
j

2 2!X X X X X= +

J

L

K
KK

a
N

P

O
OO

k / 	 (37)

The modulation amplitudes at the frequencies Xj + Xk and 
Xj – Xk are identical. Simulation and analytical results for 
quadratic spectral amplitude modulation are displayed in 
Figs. 136.27 and 136.28. Figure 136.27 shows the complex 
behavior of the amplitude modulation, in particular the clear 
presence of modulations at multiple frequencies. Figure 136.28 
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Figure 136.27
Temporal power after quadratic spectral amplitude modulation corresponding 
to q = 0.44/(100 GHz)2.
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details the PV and rms AM for the temporal power as well as 
the frequency-resolved peak-to-valley AM. The simulation 
results are in excellent agreement with the analytical results 
from Eqs. (34)–(37). The highest modulations are observed at 
the frequencies 2f3, f2 + f3, and f3 – f2, which contribute most 
of the PV modulation observed in the time domain. The first 
two of these frequencies are larger than 50 GHz, while the third 
is approximately 10 GHz. Bandwidth limitation in a temporal 
diagnostic might hinder the ability to accurately characterize 
the temporal modulation. Detection of a modulation at a low 
frequency (e.g., Xj – Xk) indicates the presence of modulation 
at a higher frequency (e.g., Xj + Xk) with identical amplitude.

2.	 Cubic Spectral Phase
A cubic spectral phase is typically the leading phase impair-

ment once the quadratic spectral phase has been compensated 
over the bandwidth of the source. Because the relative signs of 
the second-order and third-order dispersions for propagation 
in materials and in a grating compressor are different, a cubic 
spectral phase is induced when a grating compressor is used 
to compensate the chromatic dispersion of optical fibers. The 
transfer function is represented by

	 .exp i i6 1 63
3

3
3

.x ~ = +{ {~ ~` bj l 	 (38)

This leads to the output temporal field

	 .E E
t

E
6
3

3

3

2

2{
= +l 	 (39)

The expression for the third-order derivative of Eq. (1) is 
lengthy, but only the real terms should be kept since they are 
the ones leading to an approximation of the modulated power 
at first order in {3 when inserted into Eq. (39). The modulated 
power is given by

	 .sin cosP t m t m t1 j j
j

j j j j
j

3
2-{ X X X X=l_ a ai k k/ / 	(40)

For this impairment, the spectrally resolved amplitude modu-
lation is calculated first. The product of the two summation 
terms in Eq. (40) gives modulations at the frequencies 2Xj and 
at the intermodulation frequencies Xj!Xk. The term at 2Xj cor-
responds to

	
.
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(41)

The peak-to-valley AM at 2Xj is

	 .m2PV j j j3
2 3

{X X=` j 	 (42)

The terms corresponding to j ≠ k are

	
sin cos

sin cos

m m t t

t t

j k j k k j k

j k j

3{ X X X X X

X X X ,+

a `

` a

k j
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D
	

(43)

which can be expressed using a trigonometric identity for the 
product of a sine and cosine as

Figure 136.28
(a) Peak-to-valley and rms AM versus magnitude of the quadratic spectral amplitude modulation. [(b)–(d)] Peak-to-valley AM at the frequencies 2fj , fj + fk , 
and fj – fk versus magnitude of the quadratic spectral amplitude modulation. The lines correspond to the simulations and the markers correspond to the ana-
lytical derivation.
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The peak-to-valley AM for these sum/difference frequencies 
is therefore

	 X X ,m mPV j k j k j k j k3! !{ X X=X X` `j j 	 (45)

where it has been assumed that Xj > Xk.

The rms AM is obtained by noting that the average temporal 
value of Eq. (40) is equal to 1 because the spectral field is phase 
modulated but not amplitude modulated. One can then write
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Each square in the previous equation can be developed, and 
considering that the integral of a product of sinusoidal func-
tions with noncommensurate frequencies is zero if it contains 
odd powers of a sinusoidal function (either sine or cosine) at a 
particular frequency, Eq. (46) can be rewritten as

sin cosm t m t trms dj j j j j
j

j
j

2
3
2 2 2 2 2 4 2
{ XX X X= & a ak k// 	 (47)
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Equation (48) can be calculated to obtain the rms AM in the 
presence of third-order dispersion,

	 .m m m2 2rms j j
j

j k j k
j k

3 4 6 2 2 2 4{
X X X= +

!

/ / 	 (49)

The peak-to-valley AM is difficult to obtain in the general 
case because the different sinusoidal components in Eq. (40) 
have different frequencies and reach their maxima at different 
times, but a minimal and maximal bound for that quantity can 
be obtained. A minimal bound PVmin is obtained by consider-
ing that the peak-to-valley modulation must be larger than the 
modulation amplitude obtained considering any two different 
temporal arguments in Eq. (40). One can consider a time value 
for which each sine and cosine in that equation is equal to 

,1 2!  leading to the inequality

	 .m mPV PVmin j j j j
jj

3
2

$ { X X= // 	 (50)

A maximal bound PVmax is obtained by considering that, at this 
approximation order, only the modulations at all the frequen-
cies 2Xj and Xj + Xk contribute to the temporal modulation. 
The resulting peak-to-valley AM is smaller than the sum of 
individual peak-to-valley AM (the equality is reached only if 
a time exists when all the individual modulations reach their 
maximum and another time when they all reach their mini-
mum). The maximal bound is the sum of Eqs. (42) and (45), 
leading to the inequality

   .m mPV PV PVmax min j k j k
j k

j k3 -# { X X X X= +
2

a k/ 	 (51)

The span of the interval PVmax – PVmin is small compared 
to the predicted range of peak-to-valley modulation values 
since the summation in Eq. (51) contains terms that are small, 
because either some of the modulation indices are small or the 
frequency differences are smaller than the frequency sums. 
In particular, one has mPV PVmin max 3 1

2
1
3{ X= =  for a single 

modulation frequency.

Figures 136.29 and 136.30 display results pertaining to 
temporal AM in the presence of a cubic spectral phase. The 
existence of multiple modulation frequencies is clearly vis-
ible in Fig. 136.29. Figure 136.30(a) shows the analytical and 
simulation results for the peak-to-valley and rms modulation 
on the test signal as a function of the cubic spectral modulation 
magnitude. Excellent agreement is obtained for the rms AM. 
The peak-to-valley AM obtained by simulation is correctly 
bracketed by the AM calculated with Eqs. (50) and (51). The 
frequency-resolved peak-to-valley AM reveals that the AM 
is dominated by contributions at the frequencies 2f3 and f2 + 
f3. Contrary to the case of quadratic gain modulation, AM at 
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the low frequency f3 – f2 is much smaller than the AM at f2 + 
f3. A signal impaired by third-order dispersion detected by a 
low-bandwidth temporal diagnostic might seem of much better 
quality than it actually is.

Additional Considerations
At first order in the modulation resulting from each impair-

ment, the power of an impaired signal is 
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(52)

where the summations correspond to linear amplitude modu-
lation, quadratic phase modulation, quadratic amplitude 
modulation, and cubic phase modulation. Because the Fourier 
transform is a linear operator, the frequency signature of the 
modulated power can partially reveal the origin of the impair-
ments: temporal modulations at some of the phase-modulation 
frequencies indicate that the signal is impaired by a linear 
amplitude modulation or quadratic phase modulation, while 
temporal modulations at some of the sum or difference frequen-
cies indicate that the signal is impaired by a quadratic amplitude 
modulation or cubic phase modulation.

The ratio of the AM at different frequencies can be used in 
some cases to identify the source of impairment. For example, 
this ratio for frequencies fj and fk is m f m fj j k k  when the 
main impairment is linear amplitude modulation [Eq. (17)] 
and m f m fj j k k

2 2  when the main impairment is quadratic 
phase modulation [Eq. (24)]. Since the modulation indices 
and frequencies are known, such quantitative analysis can 
reveal the origin of the temporal modulation. When these two 
impairments are present, a more-precise study of the ratio of 
the AM at different frequencies is likely to reveal their respec-
tive contributions—Eq. (27) contains only two unknowns: the 
coefficient for linear amplitude modulation l and the coefficient 
for quadratic phase modulation {2. These unknowns can be 
determined if at least two modulation frequencies are present 
in the signal. With more than two frequencies, the best set 
of coefficients can be determined in the least-squares sense. 
Similar considerations can be applied to modulations observed 
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Figure 136.29
Temporal power after cubic spectral phase modulation corresponding to 
{3 = 4.8 ps3.

Figure 136.30
(a) Peak-to-valley and rms AM versus magnitude of the cubic spectral phase 
modulation. The lower and higher bounds for the peak-to-valley AM are 
shown with black and gray markers, respectively. [(b)–(d)] Peak-to-valley 
AM at the frequencies 2fj , fj + fk , and fj – fk versus magnitude of the cubic 
spectral phase modulation. The lines correspond to the simulations and the 
markers correspond to the analytical derivation.
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at intermodulation frequencies when quadratic amplitude 
modulation and cubic phase modulation are present.

Analytical expressions for the amplitude modulation resulting 
from impairments of a phase-modulated signal are the necessary 
starting points for understanding the requirements of temporal 
diagnostics used to characterize the resulting signals. In practi-
cal situations, a diagnostic with a flat response up to a frequency 
as high as twice the highest phase-modulation frequency in the 
system is necessary and sufficient to capture the time-domain 
signal, provided that the impairments are limited to those treated 
in this article. Insufficient bandwidth leads to an underestimate 
of the amplitude modulation present on the signal. For signals 
corresponding to the parameters in Table 136.III, intermodula-
tion frequencies can be at frequencies difficult to reach with the 
current state-of-the-art single-shot oscilloscopes and photode-
tector (e.g., 2f3 ~ 64 GHz). In general, AM is also generated at 
lower frequencies (e.g, f3 – f2 ~ 10 GHz), but a photodetection 
system with insufficient bandwidth might lead to a significant 
underestimate of the physical modulation, particularly in the 
presence of cubic phase.

Conclusions
The spectral and temporal properties of optical signals 

generated by multiple sinusoidal phase modulations of a 
monochromatic source have been studied. A formalism for the 
statistical prediction of the optical spectrum of these signals 
has been developed based on the central limit theorem, show-
ing the convergence of the spectrum of a signal with multiple 
phase modulations to a Gaussian spectrum with identical rms 
bandwidth, which can be calculated analytically from the 
modulation parameters, and the associated convergence of their 
cumulative density functions. The comparison between the 
directly simulated spectrum and predicted Gaussian spectrum 
for a finite number of frequencies confirmed the asymptotic 
result and showed that in most conditions, the frequency inter-
val containing 98% of the energy can be predicted from the 
modulation parameters, although there is significant variation 
when the number of frequencies is low. FM-to-AM conversion 
on signals with multiple phase modulations has been analyti-
cally described for typical spectral impairments to extend the 
results known for signals modulated at a single frequency. An 
excellent agreement with direct simulations has been observed. 
These results are useful in understanding the current limita-
tions of the laser systems using phase modulation along with 
the associated subsystems and diagnostics, and in optimizing 
the engineering of existing and future systems.
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