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Introduction
Two-plasmon decay1–6 (TPD) is a three-wave–decay instability 
in which an electromagnetic (EM) wave parametrically decays 
into two longitudinal (Langmuir) waves. Experimentally, sig-
natures of TPD have been observed in the ionosphere7 and in 
laser–plasma interaction experiments.8,9 In the context of laser 
fusion, TPD has been identified in both the indirect-10 and 
direct-drive11 approaches.In these schemes, TPD is undesirable 
because of the anomalous absorption of laser light at densities 
below the critical density and the potential to accelerate elec-
trons to high energies.12–16 High-energy electrons can preheat 
the target and severely degrade performance since efficient 
implosions require the fuel to remain on a low adiabat.

The linear stability of a single-plane EM wave subject to 
TPD has been studied for quite some time,1–6,17,18 although 
not without controversy regarding its absolute/convective 
nature in inhomogeneous plasma.16,19,20 In TPD, a photon 
decays into two plasmons, fulfilling the frequency- and wave-
number–matching conditions, ~0 = ~ + ,~l  ,k k k0 = + lv v v  where 
~0 and k k k c n n10 0 0 0 e c-/ ~=v va k are the frequency and 
wave vector, respectively, of an EM wave in a plasma having 
an electron number density ne relative to the critical density 
n m e40

2 2
c e~ r= _ i9 C at which EM waves are evanescent. Here, 

e and me are the electron charge and mass, respectively, and 
c is the speed of light. The quantities ~, ,~l  ,kv  and klv  are the 
frequencies and wave vectors of the two decay Langmuir waves 
(LW’s) (note that in the literature, the terms “Langmuir wave,” 
“plasma wave,” and “plasmon” are used interchangeably). The 
essential features are described by the temporal TPD growth 
rate c (in the presence of LW damping rate oe):
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where eE mv 0 0osc e~=v v  is the oscillation velocity of an elec-
tron in the electric field of the plane EM wave .E0

v  The relation 
between k< and k9 (parallel and perpendicular components of kv  
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with respect to k0
v ) corresponding to maximum growth defines 

a hyperbola in k space, .k k k k2
0-== < <

v _ i  From Eq. (1) it can be 
seen that two-plasmon decay cannot be studied in one spatial 
dimension (since k 0v0 osc: =v v  for EM waves). For this reason 
most, if not all, numerical calculations to date have been per-
formed in 2-D in the plane of maximum growth, i.e., the plane 
of polarization (such is the case here). 

In experiments utilizing multiple overlapping laser beams, 
the instability is believed to be driven cooperatively by several 
beams21 through the sharing of common TPD waves.22–24 To 
retain this feature in two spatial dimensions, all calculations 
were performed with two EM waves arranged symmetrically 
about the density gradient with angles of !23° (as in previ-
ous work25–28).

Parametric instabilities occur when the pump amplitude 
exceeds a threshold that depends on collisional effects, Landau 
damping, and plasma inhomogeneity. The effect of collisional 
damping of LW’s was not emphasized in earlier theoretical 
works. This was either for simplicity or motivated by the domi-
nance of inhomogeneity in experiments. In this work, all three 
effects are included.

In several previous studies of the nonlinear saturation of 
electromagnetically driven parametric instabilities, the level of 
LW excitation was seen to depend on the ion-acoustic–wave 
(IAW) damping rate. This was reported in detail in simulations 
of the nonlinear stage of stimulated Raman scattering (SRS) 
in laser hot spots,29 in regimes of low Landau damping of the 
Langmuir wave. It was found that the SRS reflectivity increased 
linearly with the IAW damping rate. In general, the develop-
ment of Langmuir turbulence and collapse physics is known 
to depend on the ion-acoustic damping rate.30–32 These earlier 
results suggest that TPD could be less severe in materials with 
high collisional damping of LW and weak collisional damping 
of IAW (experimental evidence suggests TPD suppression in 
mid-Z targets33,34). More importantly, there could be practical 
implications for directly driven inertial confinement fusion 
(ICF) since Betti35 and Lafon36 have shown that igniting targets 
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can be designed using mid-Z ablators at the megajoule (MJ) 
scale. These could provide an alternate path to ignition should 
TPD preheat be too high in directly driven designs using plastic 
(CH) ablators.37 

The following sections describe the numerical “QZAK” 
model and explain in detail the approximations that have been 
made; the properties of linear stability; and the anomalous 
absorption of hot-electron production that is characteristic of 
the nonlinearly saturated state, emphasizing the sensitivity to 
plasma conditions, followed by a summary and discussion.

Numerical Simulation of TPD Growth and Saturation 
in Inhomogeneous Collisional Plasma

Zakharov models38,39 have been used extensively to study 
the evolution of Langmuir waves and their nonlinear coupling 
with ion-acoustic waves, particularly LW self-focusing and 
collapse. The Zakharov model describes both three- and four-
wave interactions,40 which have been used to study strong 
Langmuir turbulence41,42 relevant to laboratory plasmas,43,44 

ionospheric modification experiments,30,31,45 laser-plasma 
experiments,32,46,47 and pulsar radio emissions.48 The weak tur-
bulence regime40 assumes random phase interactions between 
the linear modes and does not accurately describe the results 
from Zakharov models49 because of strong turbulence effects. 
The strong turbulence regime41,42 involves phase-coherent 
interactions including self-focusing, cavitation, and collapse, 
which can coexist50 with wave–wave processes such as the 
Langmuir decay instability (LDI).40,51 The key approximation 
of the model is that of temporal enveloping. The fast varia-
tions (2 /2 t + ~pe) of the LW electrostatic field are explicitly 
removed, and the slow variations (2 /2 t % ~pe) are followed 
by the complex-valued function, or “envelope” , .E x t1

v v_ i  For 
example, the physical LW electrostatic field Eu  is given by 

/ , . ,expE E x t i t1 2 c.c1 pe- ~= +u v v_ `i j9 C  which is centered at the 
reference plasma frequency ~pe = (4rn0e2/me)

1/2.

In the extended quasi-linear Zakharov model of TPD,32,46 

multiple envelopes are defined by an expansion in harmonics 
of the reference electron plasma frequency ~pe (which is itself 
defined in terms of a reference density n0). This is useful since 
TPD is localized between a narrow range of densities in the 
neighborhood of .n 4c  Two envelopes and a low-frequency 
term are sufficient for the present analysis,52 shown below for 
the plasma current:
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where ,J t J1 1pe2 2 %~v v  etc. The term proportional to J1
v  

is centered at the plasma frequency ~pe and therefore close 
to one half of the laser frequency. The longitudinal compo-
nent of J1

v  drives the first Zakharov equation (LW response), 
while the transverse component is responsible for the 20~  
radiation53–56 (including SRS29 and the mixed-polarization, 
high-frequency hybrid instability18). The term ,J2

v  near twice 
the plasma frequency 2~p and therefore close to the laser fre-
quency ~0 (with mismatch D~ / ~0–2~pe % 2~p), modifies 
the laser propagation and is the source of pump depletion. [The 
subscript “0” denoting the laser frequency ~0 throughout is 
not to be confused with the subscript “0” in Eq. (2), where it 
denotes terms with a frequency far below the electron plasma 
frequency.] The plasma response to low-frequency terms is 
assumed to be quasi-neutral dn = dne . Zdni, where Z is the 
ion charge and dne and dni are the electron- and ion-density 
perturbations, respectively. Inhomogeneous plasmas with a 
weak density gradient are investigated by the addition of a 
static term describing density perturbations from the reference 
density (as described in Russell et al.46) and by a constant flow 
velocity .u0

v

The primary disadvantage of a fluid-moment model such 
as the Zakharov model32,46 is the lack of nonlinear kinetic 
saturation mechanisms. Although often derived from the 
plasma fluid equations,57 ZAK25,26,32,46 and also the QZAK 
(described below) and RPIC numerical codes (described 
in Vu et al.25) can be shown to be direct consequences of 
the Vlasov equation by the use of a multiple time-scale 
analysis and the requirement that certain parameters remain 
“small,” e.g., ,E n T4 1<1 0 er2v ^ h  ,n n 1<0 0ed  and kmDe < 1 
(Ref. 58), where

 T n e4 0
2

De em r= ^ h  

is the electron Debye length. The ZAK model of TPD25,26,32,46 
[which includes linear wave–particle interactions (Landau 
damping)] is improved upon by QZAK, which evolves the 
electron-distribution function in the quasi-linear approxima-
tion. RPIC is a time-enveloped particle-in-cell (PIC) code 
that improves on QZAK since it does not make the quasi-
linear approximation.25 When the proper conditions are met, 
the predictions of RPIC and QZAK should agree. Since PIC 
codes generally make no small-parameter assumptions, they 
can be used to check the validity of QZAK calculations. This 
was discussed in a recent paper by Vu et al.27 using the code 
RPIC and also briefly in Confirmation of the Sensitivity to 
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Ion-Acoustic Damping Using RPIC Calculations (p. 122) 
(unlike typical PIC codes, RPIC assumes that a separation of 
time scales exists, which could in some sense be considered 
as an expansion parameter).

The Extended Quasi-Linear Zakharov (QZAK) Model of TPD
The harmonic decomposition in ~pe suggested by Eq. (2) 

leads to the following equation for EM waves having frequen-
cies of 2~pe (i.e., near that of the laser pump):
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This equation describes the laser pump field, which is imposed as 
a boundary condition, together with other components resulting 
from nonlinearities. The relation of the laser electric field E0

v  to 
the transverse component of the second-harmonic envelope is 
given by ,expE E i t,T0 2 ~D=v v _ i  where D~ represents the slight 
frequency mismatch that arises because n0 (= 0.23 nc) is slightly 
less than n 4c  (to allow for the density gradient). The subscript 
“T” denotes the transverse component, which is most easily 
expressed in Fourier space: .E k I kk k E k,T2

2
2:-=v v x vv v v^ a ^h k h  The 

quantity o2,T is the collisional damping rate of transverse waves 
n n,T2 0 c ei.o o` j  that gives rise to inverse-bremsstrahlung 

absorption,59 where 

 log n Z T3 10 1 1cm eV
/6 3 3 2

ei e e#.o m- -_ a `i k j  

is the usual electron–ion collision frequency (in s–1), where 
log(m) is the Coulomb logarithm and Te is the electron tempera-
ture. The term N xd v^ h is a small, nonevolving density perturba-
tion describing the weakly inhomogeneous density,46 while 

,x tnd v_ i is the quasi-neutral piece that is driven by the pondero-
motive pressure of the high-frequency fluctuations. The total 
low-frequency density is given by , ,n x t n N x n x t0e d d= + +v v v_ ^ _i h i 
with the assumption that both dN/n0 % 1 and dn/n0 % 1. In all 
calculations presented here, dN varies linearly in the x direc-
tion only (the “longitudinal” direction), while the initial density 
scale length Ln / [d/dx ln(n0 + dN)]–1 = 330 nm (at box center) 
unless otherwise noted. The right-hand side of Eq. (3) describes 
the depletion of E ,T2

v  as a result of its decay into electrostatic 
waves .E1

v  

In two-plasmon decay it is likely that the background 
particle-distribution functions are significantly changed during 
the nonlinear stage of the instability. High levels of LW’s or 
IAW’s can lead to important modifications of the electron and 
ion distribution functions; these modifications, in turn, affect the 
nonlinear levels of the wave excitation. A multiple time-scale 
analysis of the spatially averaged electron Vlasov equation, 
together with a quasi-neutral low-frequency response, leads to the 
same coupled envelope equations for the electrostatic response:
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(described by E1
v ) and for the low-frequency response 
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as described previously32 [with the exception of the terms 
representing inhomogeneity (discussed in more detail below)]. 
The important difference is that the linear response [i.e., the 
coefficients on the left-hand side of Eqs. (4) and (5)] varies 
over times that are long compared with the variation of the 
envelopes. In both Eqs. (4) and (5), D ut t 0 :2 d/ + v` j is the 
convective derivative and the term SE is the time-random-phase 
Čerenkov noise source60 for Langmuir waves as described in 
Russell et al.46 Noise enters the acoustic-wave equation only 
through the LW ponderomotive force. In Eq. (4), oe = ocoll + cL 
is the sum of the collisional and Landau damping for LW’s 
(which evolves in time) and whose dispersion depends on the 
electron thermal velocity .T mve e e=  The first term on the 
right-hand side is the longitudinal part of the nonlinear cur-
rent ,J1

v  which drives density perturbations with frequencies 
close to ~pe. In Eq. (5), c ZT m T ZT1s e i i i ec= +

/1 2` `j j is the 
speed of ion-acoustic waves that damp with the rate oi, where 
ci . 3, mi, and Ti are the ion ratio of specific heats, mass, and 
temperature, respectively. The first term on the right-hand side 
describes the low-frequency ponderomotive forces of Langmuir 
and electromagnetic fluctuations.

As in the work of Sanbonmatsu et al.,61 the slow temporal 
evolution of the spatially averaged electron distribution func-
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tion GFeH, which is a function of velocity vv  and time t only, is 
governed by a Fokker–Planck equation:
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The diffusion coefficient D vt v^ h is given by the usual quasi-
linear form:
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where k1} v^ h is the electrostatic potential , ., k tE k t ik 11 - }=v v v v_ _i i  
The quantity kDv  is the wave-vector spacing along the line in 
k space defined (for given vv) by the constraint ,k 0vpe :-~ =v v  
while Dkx and Dky are equal to 2r/Lx and 2r/Ly, respectively. 
The quantities Lx and Ly are the lengths of the simulation domain 
in the x and y directions. The second term on the left-hand side of 
Eq. (6) involving the term ,s L s Lv v vx x x y y y/o +v^ h  with 
sx , sy taking the values of either 0 or 1, is the result of spatially 
averaging the advective term in the kinetic equation for the dis-
tribution function over the domain in which Eqs. (4) and (5) are 
solved: [0, Lx] # [0, Ly] (Ref. 61). If the calculation is periodic in 
the y direction, for example, the corresponding contribution to 
this term vanishes (i.e., sy = 0). It is assumed that the outgoing 
distribution of velocities at each spatial boundary is the same 
as the spatially averaged distribution function.27 The term Dd t  
entering into Eq. (6) has the same definition as Dt  in Eq. (7), but 
it is calculated with the initial LW noise spectrum to ensure that 
GF0H is a steady-state solution to the undriven Eqs. (4)–(7) as 
described in Sanbonmatsu et al.61 Ad hoc differential operators 

,E1
2

IBvt yv9 C  ,E2
2

IBvt v8 B  which have been added to Eq. (6), are 
intended to correspond to the collisional absorption of LW and 
EM waves, described by the envelopes E1

v  and ,E2
v  respectively, 

since they can become important for collisional plasmas. The 
form of these operators is left unspecified.

The distribution function , ,F tve
v_ i  which evolves accord-

ing to Eq. (6) starting from the initial condition , ,F t Fv 0e =v_ i  
redefines the linear response of the plasma in time through the 

linear susceptibilities that modify the frequencies (e.g., cs and 
ve) and damping rates (cL) of the linear modes. In the current 
implementation of QZAK, only the electron Landau damping 
[entering into oe of Eq. (4)] is evolved:

 , , .k t
k

k F t kdv v v2

2

L
pe

e pev: :-2.c
r~

d ~v vv v v vv_ _ ai i k#  (8)

Equations (3)–(8) are solved in two spatial dimensions by a 
split-step method. Equation (3) is currently solved by neglect-
ing collisional absorption, pump depletion, and nonlinear 
terms (i.e., trivially), while Eqs. (4) and (5) are advanced by a 
pseudospectral method:62,63 All the linear propagation terms of 
Eqs. (4) and (5) are computed in Fourier space (Landau damp-
ing can be easily written in k space), while the nonlinear term in 
Eq. (4) is updated in real space. Both the transverse (y direction) 
and longitudinal (x direction) boundary conditions for the fields 
E1
v  and dn are assumed to be periodic. Physically, the longitu-
dinal direction should be open. In the longitudinal direction the 
LW’s are strongly damped, however, in the low-density region 
due to Landau damping, and they are evanescent beyond the 
quarter-critical density, so there is actually negligible cross-
communication and differences between periodic and outgoing 
boundary conditions should be negligible. Ion fluctuations are 
strongly damped at both longitudinal boundaries by the addi-
tion of a “beach” to ensure there is no recirculation.29 This can 
be important for weakly damped IAW.

The distribution function GFeH is updated less frequently 
than the envelopes by evolving Eq. (6), neglecting the inverse 
bremsstrahlung operators, using an alternating-direction 
implicit (ADI) scheme.64 At each update of Eq. (6), the Landau-
damping term cL is updated according to Eq. (8). Although 
Eqs.  (6)–(8) have been written here in the nonrelativistic 
approximation (for clarity), QZAK actually solves their rela-
tivistic generalization. 

A major assumption used in the derivation of Eq. (6) was that 
the electron-distribution function is well approximated by its 
spatial average. It is not evident that this should be so, given that 
the plasma is (weakly) inhomogeneous. However, recent results 
using the time-enveloped particle-in-cell code RPIC indicate this 
to be a valid assumption.27 This important simplification is very 
beneficial because it makes large-scale simulations of the nonlin-
ear evolution of TPD using Eqs. (3)–(8) practical, particularly in 
three dimensions. Three-dimensional simulations are important 
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since it has been demonstrated that the TPD process is driven by 
the mutual interaction of multiple laser beams.21,23,24

The self-consistent set of equations [Eqs. (3)–(8)] reach, in 
many cases, a statistical steady state in which it is possible to 
associate a heat flux associated with suprathermal particles 
and an anomalous absorption because of all the dissipative 
processes. Solutions to the velocity-space diffusion equation 
[Eqs. (6) and (7)] allow one to estimate hot-electron production, 
which is important if connections are to be made with experi-
ment16,24,65 and other kinetic modeling.25,27,28,66–68

Aspects of Linear Stability
Two-plasmon decay in a strictly linearly varying density 

profile was first found to be convectively unstable using an 
analysis based on the spatial envelope approximation.2 Later, 
Simon et al.,6 arguing that the spatial envelope approximation 
becomes invalid near the LW turning point, showed that two-
plasmon decay of a plane EM wave propagating in the direction 
of the density gradient is absolutely unstable.3,6,17,69,70 The 
correct threshold intensity was obtained by Simon et al.6 and 
is given approximately by

 .I T L1 4 2 330keV m14 e n. na ak k (9)

for conditions of current experiments,16 where I14 is the laser 
intensity in units of 1014 W/cm2 and Ln is the density scale 
length. This threshold condition is plotted in Fig. 134.35. The 
TPD instability extends to wave numbers outside the region of 
absolute instability to include modes that have been determined 
to be convectively unstable,24,67 with the convective “thresh-
old” intensity a factor of a few times higher for a single-plane 
EM wave pump.67 These works6,24,67 neglected the damping 
of the decay plasma waves. As can be seen in Fig. 134.35, 
this is a good approximation since the damping threshold 
intensity is much smaller than the inhomogeneity threshold at 
the scale accessible by +10- to 20-kJ lasers (e.g., OMEGA71/
OMEGA EP72) indicated by the yellow shaded region.

In the opposite (homogeneous) limit, the damping thresh-
old (also shown in Fig. 134.35) is simply given by 20 eiLc o  
(cf., e.g., Goldman1,73 or Kruer74) since collisional damping 

a 2coll eio o  greatly exceeds Landau damping cL for wave 
numbers k K 0.25 kD in a Maxwellian plasma ., ,2i.e e ei.o o` j  
where c0 is the temporal growth rate and kD = 1/mDe is the Debye 
wave number. A stability analysis of Eq. (4) performed for a 
single-plane EM wave and taking dN = 0 can be shown to give 

the expected growth rate [Eq. (1)] and can be simply general-
ized to the case of multiple EM plane-wave irradiation.22,24 A 
similar analysis can be performed including a linear variation 
in density dN. This results in the same two coupled differential 
equations (in wave-number space) that have been shown by 
Simon et al. to lead to the approximate threshold condition of 
Eq. (9) [e.g., Eqs. (3) and (4) in Simon et al.6].

Equation (4) can be used to compute the properties of linear 
stability with the combined effect of a density gradient and 
LW collisional damping, which are described by the terms 
dN and oe in Eq. (4), respectively, together with the effects of 
multibeam irradiation through the boundary conditions applied 
to Eq. (3). Figure 134.35 shows the numerically determined 
absolute threshold containing both LW dissipation and plasma 
inhomogeneity by solving Eq. (4) for two overlapped plane 
EM waves (see Fig. 134.36). A more-complete stability analysis 
must take into account the geometry and polarization of laser 
irradiation for a given experiment24—a three-dimensional 

Figure 134.35
The markers show the numerically determined threshold for absolute two-
plasmon–decay (TPD) instability of two plane electromagnetic (EM) waves 
incident at angles of !23° with respect to a density gradient of scale length 
Ln for different values of Zeff [and, therefore, collisional Langmuir-wave (LW) 
damping]. The plotted intensity is the sum of the single-beam intensities. 
For comparison, the dotted line shows the approximate absolute threshold 
intensity, in the absence of LW damping, for a single, normally incident plane 
EM wave6 as a function of density scale length. The collisional threshold in 
the absence of plasma inhomogeneity is shown by the horizontal dashed lines 
for various Zeff. In all cases, the electron temperature is given by Te = 2 keV. 
The yellow-shaded region indicates scale lengths characteristic of OMEGA 
experiments, while the blue-shaded region indicates scale lengths for ignition-
scale designs. 
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problem. Currently, this is being investigated using a new code 
(ZAK3D) that solves Eqs. (4) and (5) in three dimensions.75,76

For ignition-class lasers with +1 MJ of laser energy [e.g., 
the National Ignition Facility (NIF)77], the TPD threshold in 
direct-drive designs37 is exceeded by a wider margin than in 
experiments on OMEGA/OMEGA EP, not because of a sig-
nificant increase in laser intensity but because of the 2# to 3# 
increase in density scale length. As can be seen in Fig. 134.35, 
the inhomogeneity threshold is decreased by roughly a factor of 
2 to 3. For such scale lengths, the collisional threshold can be 
made comparable to the inhomogeneity threshold by increas-
ing the effective ionization state Z Z Z2

eff /  of the ablator 
material to Zeff + 14 (e.g., silicon) (for multiple ion-species plas-
mas, the effective electron–ion collision frequency is obtained 
by replacing Z $ Zeff in the usual expression for oei). From the 
point of stability with respect to TPD, Fig. 134.35 suggests that 
increasing the Zeff of the ablator is beneficial (for a fixed elec-
tron temperature), particularly if TPD is marginally unstable 
in CH, since satisfactory mid-Z ablators can be designed.35,36

All calculations presented in Nonlinear Saturation (p. 118) 
have assumed that the electromagnetic pump consisted of two 
plane EM waves incident at angles of !23° with respect to the 
direction of the density gradient (see Fig. 134.37). The plasma 

parameters were chosen to be those of recent long-scale-length 
experiments in CH targets.16,65 When Zeff was varied, these 
hydrodynamic parameters were not changed: the electron 
temperature was Te = 2 keV with Ti = 1.5 keV for ions. The 
density scale length was Ln = 330 nm with the simulation box 
length Lx set to include densities from 0.19 nc to 0.27 nc, i.e. 
Lx = (8/23) Ln. [A separate analysis based on radiation–hydro-
dynamic simulations has been used to calculate the dependence 
of plasma parameters (e.g., density scale length and electron 
temperature) at the quarter-critical surface for different abla-
tor materials with similar irradiation conditions34 but this 
will not be discussed here.] When simulating a multiple-ion-
species plasma, Eq. (5) was used to simulate an “effective” 
IAW such that Z and mi were replaced by their averages (over 
ion species) except in the collisional LW damping rate as 
mentioned previously. Values of Zeff = 5.3, 10, and 14 were 
obtained by modeling CH, SiO2, and Si plasmas, respectively. 
The IAW damping rate oi is currently a fixed parameter that 
is initialized at the start of the calculation. This was equated 
with the expected Landau-damping rate of the least-damped 
IAW mode78,79 for CH, SiO2, and Si, except for the Zeff = 10 
and 14 strong damping cases, where iou  was set to . ,0 1io =u  
where i i s/o o ~u  is the dimensionless IAW damping rate and 
~s - kcs is the IAW frequency.
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Figure 134.37
The time-averaged electrostatic field spectrum E k1

2
x

v v^ h  (in arbitrary units) 
taken from a representative run at a time when nonlinear saturation has been 
attained. The instability is driven by two plane EM waves (black arrows) that 
are incident at an angle of !23° with respect to the direction of the density 
gradient (x direction) and are polarized in the simulation (x,y) plane. The green 
(white) curves show the location of the maximum in growth rate as calculated 
by homogeneous theory [Eq. (1)]. The red circle indicates the location of the 
Landau cutoff . .k 0 25Dem =v` j

Figure 134.36
The electrostatic field intensity E n T41

2
0 erv _ i at nonlinear saturation 

as a function of laser intensity for a plasma with Zeff = 14, Ln = 330 nm, and 
Te = 2 keV. The dashed (solid) curves show the results with (without) quasi-
linear (QL) evolution of the electron-distribution function. The upper and 
lower sets of two curves correspond to strong .0 1io =u` j and weak .0 02io =u` j 
IAW damping, respectively. The error bars indicate the root-mean-square 
(rms) deviation from the average value at saturation.
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For non-negligible LW amplitudes, the QZAK model includes 
nonlinear coupling to ion fluctuations dn, which introduces 
a rich variety of nonlinear and turbulent phenomena. It also 
includes quasi-linear (kinetic) effects. Together, these effects 
will determine the long-time behavior of TPD relevant to experi-
ment and the relative importance between absolute modes and 
convective modes in the nonlinear state.

Nonlinear Saturation
1. Anomalous Absorption  

(Heating of Near-Thermal Electrons)
Several diagnostics have been implemented to quantify the 

level of two-plasmon–decay instability and its dependence on 
plasma composition. Figure 134.37 shows the spatially averaged 
Langmuir-wave intensity n T4rE1 0 e

2v  as a function of laser 
intensity for Zeff = 14 at late time, when E1

2v  is judged to 
be steady. In all cases, spatial averaging is carried out over the 
whole simulation box that spans initial densities from 0.19 nc to 
0.27 nc. It is convenient to define the energy (per unit length in 
the ignorable coordinate z) associated with electrostatic 

 , ,W t x y E x y t 4d d1 1
2

/ rv_ _ _i i i#  

and electromagnetic waves 

 , ,W t x y E x y t 8d d2 2
2

/ rv_ ^ _i h i#  

[which are simply related to the above spatial averages 

 ,W A E 41 1
2

r= v ^ h  ,W A E 82 2
2

r= v _ i  

where A = Lx # Ly is the area of the simulation box]. The effect 
of the quasi-linear evolution of the distribution function can 
be seen by comparing the saturated level of E n T41

2
0 erv  

with and without evolution of Eq. (6) for the spatially averaged 
electron-distribution function. Previously in Myatt et al.,26 esti-
mates of electron heating by TPD were based on the ZAK model 
using test particles; Fig. 134.37 demonstrates the importance 
of self-consistently evolving the electron-distribution function. 
The results are broadly consistent with those anticipated.26 Fig-
ure 134.38 shows a contour plot of the self-consistently evolved 
electron-distribution function, where significant deviation from 
the initial Maxwellian distribution is evident.

Figure 134.39 illustrates the dependence of E n T41
2

0 erv  
(or equivalently W1) on laser intensity for three values of Zeff 
(5.3, 10, and 14) and for weak .0 02io =u_ i and strong .0 1io =u_ i
ion-acoustic damping. It is evident that for a given ion-acoustic 
damping rate, the case of Zeff = 14 has the lowest value of W1. 
Regardless of the value of Zeff, W1 is smaller if ion-acoustic 
waves are weakly damped. The saturated value of W1 can 
be connected to enhanced absorption of laser energy in the 
quarter-critical region in the following way: it can be shown 
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that the field equations [Eqs. (3)–(5)] satisfy the energy con-
servation law
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where P2
v  is the Poynting vector 

 c i E E E E4P2
2

2 2 2 2p : :-d d~= ) )v v v v vb l : D 

and recalling that n n 2,T2 0 c ei.o o` j  is the damping rate 
of the driving EM waves and .2eicoll .o o  Note that the dis-
sipation associated with ion-acoustic waves does not enter in 
Eq. (10) because of the smallness of the mass ratio. In statistical 
steady state, defined by G2t[W1 + W2]Hx = 0, where G Hx implies 
a running time average,
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(11)

which, if kLc
v^ h is positive definite, gives the lower bound for 

the amount of power dissipated in the quarter-critical region, 
caused by electron–ion collisions, by the incident electromag-
netic waves:

 .s
W

W
W4 1 4d P2

2

1
2

ei
:- L

o
+

x
x

x

x
v v
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The term in the square brackets in Eq. (12) is a factor that 
multiplies the usual collisional energy absorption rate. This 
factor represents the anomalous (anom) enhancement of laser 
energy absorption caused by TPD W W1 4 1 2anom /h + x x  
(the assumption being that absorption is caused by electron–ion 
collisions and does not involve suprathermal electrons). A value 
of hanom = 1 would give the usual amount of power dissipated 
that is associated with collisional absorption of light waves 
and corresponds to the usual terms present in ICF direct-drive 
hydrodynamic design codes. This can be estimated, for small 
absorption, as a .I I I L c4 0 24x0 0 ei- . o_ ` `i j j  (for CH). 
Figure 134.40 shows Fig. 134.39 replotted to illustrate the 
dependence of hanom on laser intensity for materials of differ-
ent ionization Zeff and IAW damping rate. These results could 
be used to modify hydrocode predictions in a simple way by 
introducing a multiplier (hanom) on the usual inverse brems-
strahlung term.
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Figure 134.39
The electrostatic field intensity E n T41

2
0 erv _ i  at nonlinear saturation as 

a function of total laser intensity for values of Zeff = 5.3 (green), 10 (red), and 
14 (blue), and for weak .0 021o =u` j (dashed) and strong .0 11o =u` j ion-acoustic 
wave (IAW) damping (solid curves). The error bars give the rms deviation 
from the mean values. The deviation can become quite significant for the most 
strongly driven cases.
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The anomalous absorption factor hanom [see Eq. (12)] computed as a 
function of total laser intensity for values of Zeff = 5.3 (green), 10 (red), 
and 14 (blue), for weak .0 021o =u` j (dashed) and strong .0 11o =u` j IAW 
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mean value computed at nonlinear saturation.
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Figure 134.41 shows the dissipation spectrum 

 k E k 41
2

Lc r
x

v v v^ ^ _h h i  

that is associated with suprathermal electron production, i.e., 
the last term on the right-hand side of Eq. (11). It can be seen 
that features similar to the linearly unstable LW’s exist, but dis-
sipation extends to the Landau cutoff. Comparison of the size of 
the two terms on the right-hand side of Eq. (11) shows that the 
first (collisional term) is generally larger than the second, and 
that pump depletion is important for the more strongly driven 
runs presented here. It also suggests that the reference electron 
temperature Te should be evolved. A future improvement of the 
code will be to evolve Eq. (3) self-consistently including pump 
depletion and collisional absorption. Evolution of the reference 
electron temperature Te will also be considered.
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A snapshot of the dissipation spectrum k E k 41Lc rv v v_ _ _i i i (in arbitrary units) 
that is associated with hot-electron generation and whose sum determines the 
power dissipated by collisionless processes [Eq. (11)]. As in Fig. 134.36, the 
green (white) curves show the spectral location of the maximum in TPD growth 
rate as calculated by homogeneous theory for each beam [Eq. (1)] and the red 
circle indicates the location of the Landau cutoff . .k 0 25Dem =va k

2. The Production of Energetic Electrons
Velocity moments can be taken of Eq. (6) in the usual way 

to obtain evolution equations for the hydrodynamic variables. 
For example, an energy equation can be derived from Eqs. (6) 
and (7) for the spatially averaged electron-distribution function 
GFeH (by multiplying by mev2/2 and integrating over velocities) 
with the result
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(13)

where W m F2 dvv2
e e e= v` j #  is the total electron kinetic 

energy. The terms on the right-hand side of Eq. (13) can be 
identified as the dissipated power associated with the production 
of suprathermal electrons, the collisional absorption of Lang-
muir waves, and collisional absorption of the pumping laser 
(which is usually the only term included in radiation–hydrody-
namic calculations). A statistical steady state can exist if these 
source terms balance the flux through the boundaries, where 

Q Q Q q q q q, ,i i i i i i i0 0
> < > > < <- - - -/D D D = ` `j j and the subscript 

i denotes each of the coordinate directions. The heat flux has its 
usual definition q m F2 dvvv2

0e e/
3

v vv_ i#  with the exception 
that the integral is split into two parts ,q q qi i i= +< >  depend-
ing on the sign of the velocity component vi [i.e., each piece 
corresponds to either forward-going (>) or backward-going 
(<) velocities with respect to the i direction]. The subscript “0” 
implies that it is calculated with the initial electron-distribution 
function GFeH(t = 0). For a symmetric (e.g., Maxwellian) initial 
distribution, q q0 0

> <-=v v  and the net heat flux vanishes.80

Together with Eq. (10), global energy conservation may be 
expressed as
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and the absorbed power of the laser is balanced by the power 
flowing through the boundaries carried by the kinetic energy 
of electrons. For the case where the velocity space diffusion 
is assumed periodic in the i direction (which is the y direc-
tion transverse to the density gradient in all the calculations 
presented here), the corresponding flux term Q Li iD  is 
absent. Consequently, for doubly periodic boundaries, the only 
steady-state solution is the trivial one .s 0d P2: =

x
v v#  When 

one boundary is open (e.g., in the direction of the gradient), it 
corresponds to the use of “thermalizing” boundaries as is often 
implemented in PIC codes. The applicability of these bound-
ary conditions has been discussed in Myatt et al.,26 where the 
possibility of the reheating of electrons that pass multiple times 
through the quarter-critical region was evaluated.

Figure 134.42 shows the hot-electron power fraction fh
30>  as 

a function of time for two runs that correspond to overlapped 
laser intensities of IL = 6 # 1014 W/cm2 and an effective 
ionization of Zeff = 10 for two values of the ion-acoustic 
damping rate ( .0 1io =u  and 0.02). The fraction f th

30> _ i is 
defined as the ratio of the heat flux DQx to the (constant) laser 
intensity IL (in W/cm2) with the restriction that the limits 
on the range of integration in the integral determining the 
heat flux DQx are adjusted to include only electrons having 

energies greater than 30 keV (for this reason, the superscript). 
Experimentally, the fraction f E E,exph h L/  is a time-
integrated measurement often determined (for a laser pulse of 
energy EL) by inferring the energy Eh of suprathermal electrons 
via the strength of Ka emission from a fluorescent layer buried 
in the target.16 A model of electron–photon transport in matter 
is used to relate the observed energy in Ka emission to the 
energy of hot electrons. For example, a molybdenum layer was 
used in Yaakobi et al.16 having .E 17 5 keVK .

a
 [which justifies 

our cutoff energy of 30 keV in the definition of ( )f th
30> ]. To 

facilitate a comparison with experiment, we define a running 
time average .fh x

30>  It can be seen from Fig. 134.42 that it 
is often possible to define a meaningful steady state so that 

fh x
30>  is constant (and can be crudely equated with the 

experimental energy fraction af f ,exph hx
30> ). This steady-

state time average (for x > 35 ps) is plotted in Fig. 134.43 for 
materials of varying Zeff and .iou
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Hot-electron fraction ,f h x

30>  as determined at nonlinear saturation as a 
function of total laser intensity for Zeff = 5.3 (green curve), 10 (red curve), 
and 14 (blue curve). The solid curves indicate runs with an IAW damping 
rate of . ,0 1io =u  while the dashed curves correspond to . .0 02io =u  The error 
bars quantify the rms fluctuations about the average that is associated with 
the steady state.

Figure 134.43 shows the main results of this study. It can 
be seen that the hot-electron fraction fh x

30>  increases rapidly 
for IL L 3 to 5 # 1014 W/cm2 (with a threshold depending on 
Zeff) and then saturates at the level of several percent for CH 
targets, which is broadly consistent with PIC calculations27,68 
when electron–ion collisions are accounted for (in the RPIC 
calculations of Vu et al.,27 grid damping plays the role of elec-

Figure 134.42
The heat flux carried by hot electrons with energies greater than 30 keV as 
a fraction of the incident laser power as a function of time .f th

30> ` j9 C  These 
results were obtained for a plasma with Zeff = 10 and a total laser intensity 
of 5 # 1014 W/cm2. The solid curve corresponds to an ion-acoustic damping 
rate of . ,0 1io =u  while the dashed curve corresponds to . .0 02io =u  In both 
cases, the runs commence at t = 0 but quasi-linear diffusion is not started 
until approximately t = 17 ps (as indicated by the arrow).
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tron–ion collisions), and also experimental measurements65 (the 
density scale length, electron temperature, and laser intensities 
were motivated by OMEGA EP experimental conditions using 
CH targets65). Calculations of SiO2 targets, having weak ion-
acoustic wave damping . ,0 02io =u_ i  show a similar intensity 
dependence but saturate at a level approximately half that of 
CH targets, while calculations of Si targets (Zeff = 14, .0 02io =u

had the lowest hot-electron fraction of all, which is particularly 
pronounced at mid-intensities (IL + 5 # 1014 W/cm2). In part, 
this is due to the effect of the increased threshold for Si associ-
ated with the Langmuir-wave damping (see Fig. 134.35).

In general, the lowest hot-electron production was seen for 
materials with the highest Zeff and the smallest ion-acoustic 
wave damping . .0 02io =u  This suggests CH ablators might 
not be the best choice of ablator material from the point of 
view of TPD. 

3. Confirmation of the Sensitivity to Ion-Acoustic Damping 
Using RPIC Calculations
Two 2-D RPIC simulations that do not make the quasi-linear 

approximation or any assumption regarding the spatial unifor-
mity of the electron distribution function were performed to 
independently investigate the effect of the IAW damping rate 
on the development and saturation of TPD.

Over 50 QZAK calculations were performed in the current 
analysis, most for a long density scale length (Ln = 330 nm) 
and integrated out to times close to +0.1 ns (+5 ns in combined 
total). Because RPIC calculations are much more computation-
ally intensive than QZAK, the RPIC calculations were per-
formed at a shorter scale length (Ln = 130 nm) and integrated 
for shorter times (t = 9 ps). The ion-acoustic damping rate was 
modified by varying the ion Landau-damping contribution to 

iou  through the ion temperature [a hydrogen (Z = 1) plasma 
was assumed]. All other physical parameters were the same as 
described earlier for the QZAK calculations.

The two RPIC simulations used identical simulation 
domains consisting of 4096 (x direction) # 1024 (y direction) 
computational cells, and the electron and proton distributions 
were each represented by 32 particles/computational cell. The 
boundary conditions were compatible with those assumed by 
QZAK [see Numerical Simulation of TPD Growth and Satu-
ration in Inhomogeneous Collisional Plasma (p. 113) and 
The Production of Energetic Electrons (p. 120)]: the particles 
were recycled periodically in the y direction and absorbed at the 
surfaces x = 0 (laser entrance boundary) and x = Lx (laser exit 

boundary). At these boundaries, Maxwellian baths of electrons 
with temperature Te and ions with temperature Ti were assumed, 
and the particles absorbed at these surfaces were replenished 
accordingly. Each of the two incident pump plane EM waves 
was given an intensity of I0 = 1 # 1015 W/cm2 with polariza-
tion in the x–y plane.

The so-called “low” and “high” IAW damping simulations 
correspond to Ti = 0.1 keV T T 20e i =`  and .1 11 10i

3#.o -u j 
(electron Landau damping of IAW is not present in RPIC) and 
Ti = 1 keV T T 2e i =`  and .2 70 10i

1#.o -u i, respectively. The 
high-damping case has been presented elsewhere,27,28 but the 
results are reproduced here for comparison. Figure 134.44 
shows the suprathermal heat flux fh ( Q x

>D  normalized to the 
total laser intensity) as a function of time over a period of 10 ps 
for both cases. In the simulations, Q x

>D  is computed from the 
electron flux accumulated at the laser exit boundary (x = Lx) 
accounting for electrons of all energies. As before [The Pro-
duction of Energetic Electrons (p. 120)], Q x

>D  represents the 
electron heat flux in excess of its initial (Maxwellian) value.
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The suprathermal heat flux fh, as computed by the code RPIC,27 is shown as a 
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IAW damping. While the low-damping case reaches saturation much more 
quickly, its saturation level is lower.

Figure 134.44 indicates that both the high-damping and low-
damping cases reached saturation, and that the high-damping 
case achieved a suprathermal heat flux Q x

>D  about twice as 
large as that of the low-damping case. Furthermore, while the 
high-damping case took several (+10) picoseconds to reach 
saturation, the low-damping case achieved saturation in about 
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0.5 ps. The comparison shown in Fig. 134.44 presents sup-
porting evidence that the IAW damping rate has an important 
effect on the temporal development and saturation level of TPD.

The RPIC simulation corresponding to high iou  and shown in 
Fig. 134.44 has been previously analyzed in some detail.27,28 
The nonlinear state was described in terms of cavitating LW 
turbulence, and it was determined that prerequisites for the 
quasi-linear description were met—i.e., the distribution func-
tion was well described by its spatial average and trapping 
effects were negligible.28 A comparison between RPIC and 
QZAK is given in Vu et al.,81 but we speculate here on the 
importance of the ion-acoustic damping rate in the context of 
cavitating LW turbulence.

4. Dependence of G fhH on the IAW Damping Rate 
and Nucleation Dynamics
The significant sensitivity of the saturated level of TPD 

excitation on the IAW damping rate is clearly a nonlinear effect 
since the linear theory does not involve IAW’s. Such sensitivity 
might be anticipated since it has been observed in previous ZAK 
model studies of SRS in the weak Landau-damping regime.29 
Previous work30–32 has also demonstrated that nucleation 
of cavitons is favored by strong IAW damping. The detailed 
manifestation of this for the simulation regime considered here 
is under study. A qualitative summary of our current view is 
based on the assumption that Langmuir cavitation and collapse 
are the dominant processes in the nonlinear stage of TPD for 
the parameters considered.28

In the cavitating turbulence scenario, the level of electro-
static fluctuations is governed by the nucleation–collapse–
burnout cycle82,83 and the time scale of this process is gov-
erned by the IAW damping rate.27 The interference pattern of 
the linearly excited triad of free plane LW’s (see Fig. 134.36) 
produces density trenches that are modulated longitudinally 
by the beating of the forward common LW with the backward 
pair of triad waves. The ponderomotive force from the peaks 
in E1

2v resulting from this modulation produces density 
depressions that can support localized (or bound) states of 
the Langmuir field. The backward triad waves have long 
wavelengths and frequencies near the local electron plasma 
frequency and can directly nucleate the bound state.82,83 
These localized states then proceed to collapse and burn out, 
producing a large enhancement of LW energy and electron 
flux. As the triad modes evolve to higher k values,28 the spa-
tial scale of the longitudinal modulation appears to produce 
much stronger, smaller-scale density cavities in the trenches. 

These residual cavities appear to be too narrow and deep to 
efficiently nucleate new cavitons. The Langmuir turbulence 
then dies out locally until the short-scale density fluctuations 
dissipate by IAW Landau damping. The nucleation process 
can then resume with another burst of Langmuir turbulence 
once this has occurred.

In the nucleation–collapse–burnout cycle,82,83 a source must 
be present that can excite the bound state. The nucleation source 
is essentially the overlap integral of the bound-state wave 
function and the source, which may be the TPD current on the 
right-hand side of Eq. (4). This source produces freely propa-
gating LW’s that are dominantly the triad modes discussed 
recently.27,28 If this source has frequencies close enough to the 
bound-state eigenfrequency, it can cause a near-resonant exci-
tation of the bound state and initiate a collapse. To have such 
frequencies, free LW’s must have long wavelengths such that 
the bound-state wave function having the largest overlap inte-
gral with this long-wavelength source is the lowest or “ground 
state” with no nodes in its wave function. Our experience is 
that only this state is appreciably excited. A density well that 
is too deep may have a deeply bound ground-state wave func-
tion, which will not efficiently couple to a long-wavelength free 
LW. This means that for efficient nucleation, the density well 
should not be too deep, implying that the spatial width should 
be large enough to trap a weakly bound ground state. Strong 
IAW damping appears to produce more cavities of this type 
(because of this nucleation effect, the LDI cascade, where LW’s 
decay into LW’s with increasingly lower wavelengths, never 
progresses past a few steps before cavitons are nucleated in the 
ion-density fluctuations created by the LDI process itself).29 
For these TPD simulations, LDI appears to play a minor role, 
while the TPD triad25 and the ion-density fluctuations arising 
from their beating play a similar role in the nucleation process.

It is very difficult to diagnose, in microscopic detail, a system 
with as many as 104 cavitons.28 The scenario outlined above is 
consistent with our experience with simpler systems. Further 
microscopic details will be presented in a future publication.

Summary and Discussion
A two-dimensional model that further generalizes the 

extended Zakharov model of TPD to include quasi-linear dif-
fusion of the electron distribution function has been described. 
The model addresses the nonlinear evolution of the TPD insta-
bility caused by the self-consistent coupling of TPD-generated 
LW’s with ion-density fluctuations and quasi-linear evolution 
of the electron-distribution function. Quasi-linear evolution of 
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the electron-distribution function was shown to lead to satura-
tion of the average LW intensity at lower values than predicted 
by the Zakharov model alone for parameters of interest to 
recent experiments.

In the linear regime of infinitesimal LW amplitude, the 
model allows for TPD stability to be determined in the presence 
of both density inhomogeneity and LW damping for a laser 
pump described in terms of multiple overlapping plane EM 
waves in two dimensions. A more-complete treatment requires 
the model to be solved in three dimensions. A 3-D code solving 
Eqs. (4) and (5) but omitting the quasi-linear diffusion terms is 
described in Zhang et al.76 It was shown that collisional damp-
ing of LW’s is important for directly driven ICF targets at the 
ignition scale. In the nonlinear stage of TPD it was shown that 
the energy absorbed by the target and converted into electron 
thermal energy by the collisional absorption of TPD LW’s is 
comparable to, or greater than, the energy converted into hot 
electrons. It was suggested that maximizing the collisional 
damping of LW’s in direct-drive designs could be beneficial 
in mitigating TPD absorption and preheat.

For fixed electron temperature and density scale length, the 
lowest hot-electron production was seen for materials with the 
highest Zeff and the smallest IAW damping rate. The reduction 
in hot-electron fraction can be partly explained by the increased 
threshold. The nonlinear effect associated with weakly damped 
ion-acoustic waves was independently investigated with RPIC 
calculation, and a possible physical explanation for this effect 
was given in terms of nucleation dynamics of cavitating 
Langmuir turbulence. An experimental test might be to compare 
TPD in two materials of similar Zeff, e.g., Si- and Ge-doped 
plastic, where the second material has a greater IAW damping 
rate because of the presence of light (H) ions.

Future improvements to the QZAK model will include 
implementation of terms describing the effects of pump deple-
tion and collisional absorption for the EM pump. Self-consistent 
evolution of the reference electron temperature will also be 
investigated. Work is also underway to implement the quasi-
linear diffusion equation in three dimensions.
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