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Introduction 
Frequency-domain wavefront reconstruction methods are as old 
as the very early wavefront reconstructors.1,2 Freischlad placed 
this subject on solid ground.3 The rectangular map constraint 
of the conventional Fourier method has been removed in an 
iterative Gerchberg-type algorithm dealing with an arbitrary 
boundary shape.4 A series of recent papers by Poyneer discuss 
improvements on handling boundary conditions and applica-
tions in extreme adaptive optics.5,6 Similar principles have been 
applied in shearing interferometers.7 More serious attention 
has been paid to the accuracy of the reconstruction methods in 
Refs. 8–10. The works of Campos and Yaroslavsky presented 
a solution based on a band-limited integration technique in 
frequency domain. The two-dimensional (2-D) extension 
of the same method was not discussed. Complementary to 
their works, Bahk introduced a full 2-D wavefront recon-
structor based on the band-limited derivative calculation.11 
Both approaches emphasize the frequency response of the 
reconstructed signals. The frequency response of wavefront 
reconstruction has been discussed earlier in the analysis of 
lateral-shearing interferometry.12 Frequency-response char-
acteristics of a reconstruction is important in focal-spot diag-
nostics for high-power lasers, where the focal spot is indirectly 
characterized using wavefront information reconstructed from 
Shack–Hartmann slopes data.13

This article develops a set of encompassing mathematical 
tools for wavefront reconstruction problems, where many 
additional benefits naturally arise, interconnecting the results 
of previous works. The benefits are exemplified by the develop-
ment of two new wavefront reconstructors and the analytical 
derivation of noise-propagation coefficients of several well-
known wavefront reconstructors.

This article is organized as follows: (1) The mathematical 
tools and symbols regarding band-limited derivative operations, 
which are needed for the analyses in the subsequent sections, 
are introduced. (2) A way to improve the accuracy of the finite-
difference method is discussed in connection with wavefront 
reconstruction. The Simpson rule is adopted for developing a 
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new spatial-domain iterative reconstruction algorithm. The 
exact details of the algorithm and its frequency-domain prop-
erty are described. (3) A band-limited reconstruction algorithm 
is extended to hexagonal geometry, which greatly enhances 
the flexibility of band-limited reconstructors. (4) Finally, the 
noise-propagation curve is analytically derived and compared 
with numerical simulations.

Band-Limited Derivative
The main results of band-limited derivative techniques in 

the context of wavefront reconstruction were summarized in 
Ref. 11. The full derivation of the results will be presented 
here for the sake of completeness. Additional new notations 
are introduced that will simplify the expressions in Hexagonal 
Band-Limited Reconstructor (p. 136).

The motivation for band-limited derivatives, especially for 
discrete samples, lies in the fact that it provides an analytical 
tool for converting back and forth between slope measure-
ments and wavefront signal. We start by asking what the exact 
interpolation formula is for derivatives in discrete samples. 
According to sampling theorem, a band-limited signal can be 
exactly reconstructed at any point by convolving a sinc function 
with discrete samples. The derivative of a band-limted signal 
is obtained by directly differentiating the sinc function’s con-
volution kernel that becomes a spherical Bessel function ( j1) 
(Ref. 14). The derivative interpolation expression at discrete 
points is
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where the spherical Bessel function evaluated at integer mul-
tiples of r is equivalent to
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The summation of the left-hand side of Eq. (1) for all sample 
points can be shown to be equal to zero by taking advantage of 
the expression on the right-hand side and using the periodicity 
condition of discrete samples:
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Equation (1) is easier to handle in frequency domain. Discrete 
Fourier transform (DFT) and Fourier series analysis lead to 
the following equivalent expression:
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where the tilde notation means DFT of the symbol beneath it 
and S(k) (sawtooth wave) is defined as

S

,

,

,

,

,

, ,

, ,

, ,

, ,

k

N
N
k

N
k

N
N
k

N
k

k N

k N

k N N

k N

k N N

0

1

1

0 2 1

2

2
1 1

0 1 2

1 2 1

for even

for odd

-

-

-

-

-

-

f

f

f

f

=

=

=

= +

=

= +

_

]

]

i

g

g

Z

[

\

]
]]

]
]]
Z

[

\

]]

]]

Z

[

\

]
]
]
]
]

]
]
]
]
]

 (5)

Equation (4) provides a convenient way of calculating exact 
derivatives from band-limited signals. When the sampling 
points of a derivative signal are offset by a half-sampling space 
from the sampling points of the original signal, a slightly dif-
ferent form should be used:
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where the Bessel coefficients can be replaced again with an 
integer expression
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Employing a similar Fourier series analysis that leads to  
Eq. (4), the frequency-domain expression of Eq. (6) is reduced to
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where T(k) (triangular wave) is defined as
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We also need an interpolation formula for creating a signal 
shifted by half-sample spacing for Fried geometry:
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The DFT of Eq. (10) is

 R ,expk i
N
k k k/1 2{
r

{= u_ a _ _i k i iR  (11)

where R(k) (rectangular wave) is

R
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Therefore, the partial derivative in the x direction for Fried 
geometry in frequency domain is
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Equation (13) has an additional degree of freedom (index 
p for the y direction) because the reconstructed sample point 
in the Fried geometry must first be shifted in the y direction 
by a half-sample size before applying the half-sample shifted-
derivative operation in the x direction.
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For consistency, we can verify that the sequential operations 
of half-pixel shift and derivative operation using R(k) and S(k) 
produce the same result as single operation of T(k), i.e., T(k) = 
R(k)S(k). This relation, however, does not hold for the value 
at N/2 for even N, where the left-hand side is 0.5, whereas the 
right-hand side is 0. To remove this paradox for an even number 
of samples, we choose to use S(N/2) = 0.5 and R(N/2) = 1 or 
S(N/2) = –0.5 and R(N/2) = –1. A similar choice was made in 
Ref. 9 for band-limited integration operators from a different 
perspective. The redefinition of S and R at the midpoint is 
implied from hereon. Using the new definition, the half-pixel 
operator used in the right-hand side of Eq. (11) can be alterna-
tively expressed as

 R S .exp exp
N
i k k i k! !
r

r=b _ _l i i8 B  (14)

We can establish the connection from discrete to continuous 
variable derivative as follows: S can be considered as a discrete 
angular frequency vector circularly shifted by .N 27 A  If we 
define kx(p) = (2r/Dx)p for p = 0, …, (N–1), then

 S ,
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where the bar over kx denotes a circular shift by .N 27 A  Using 
Eq. (14), Eqs. (4), (8), and (11) can be alternatively expressed as

 ,ikx x{ {= uP  (16)

 ,expi k i x k
2,1 2x x x{ {
D= ub lR  (17)

 ,exp i x k
21 2 x{ {
D= ub lR  (18)

The kx notation establishes the formal connection with continu-
ous variable derivatives.

In many practical situations, the band-limited calculations 
may not produce exact results, depending on the nature of 
signals. The magnitudes of the Fourier coefficients of a lin-
ear function, for example, decrease as 1/(spatial frequency), 
whereas Eq. (16) indicates that the coefficients of the derivative 
are multiplied by the spatial-frequency vector. Therefore, the 
highest spatial-frequency coefficient does not vanish, even if N 
approaches 3 . Therefore, the linear terms are not band limited 
and need to be treated separately. Equations (16)–(18) form the 
basis of the following analysis.

Simpson Reconstructor
The analysis in the previous section suggests that an accurate 

derivative calculation at discrete samples requires the super-
position sum of the whole set of samples. This can be done 
more conveniently in the frequency domain, which results in a 
band-limited reconstructor with unity frequency response.11 On 
the other hand, it is still worthwhile to investigate an improved 
finite-difference scheme for purely spatial-domain operation. 
In finite-difference methods involving only a few points, a high 
degree of accuracy is preserved by distributing the finite dif-
ference over both the measured derivative samples (i.e., slopes) 
and the integrated samples. Denoting the wavefront estimate 
as {t and the measured slope as S, one can start from a general 
finite-difference expression such as 

 a j i j b k S i k
j k

{ + = +t_ _ _ _i i i i/ /  (19)

for 1-D problems. Coefficients a and b belong to a specific 
finite-difference scheme. For example, Southwell14 showed a 
reconstructor based on
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The frequency response of the Southwell reconstructor 
is low at high spatial frequency. We enhance the frequency 
response using the Simpson rule, which is

 .i i x S i S i S i1 1
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An iterative wavefront reconstruction based on this scheme 
will be developed in the next section.

1.  Simpson Iterator
Casting the local 1-D Eq. (21) into a least squares form in 

2-D, we obtain an error metric (f) as
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Dx and Dy are moved around to the {t side so that squared 
terms are in units of slopes. This provides equal weight to the 
differences in x and y directions on the assumption that the 
magnitude of slopes is comparable in either direction.

The condition ,i j 02 2f { =t_ i  leads to an equation that can 
be used for the iterative algorithm. It is assumed that phase and 
slope points are embedded in an arbitrary region. The differ-
entiation of the error metric results in four groups, which are 
indicated by different colors in Fig. 127.22. Each group can 
be used in the equation only when all of its elements exist. 
This strategy is realized by using g parameters as shown in 
the following:

SIMPSON:
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gL, gR, gU, and gD are flags with values 0 or 1, where L, R, U, 
and D indicate left, right, up, and down directions, respectively. 
They are 0’s if the quantities in the parentheses next to them are 
incalculable or 1’s otherwise. For example, gL at the point (i, j) 
does not vanish only when the slopes’ measurements exist at 
the additional points at (i, j – 1) and (i, j – 2). The scope of each 
flag is graphically indicated in Fig. 127.22. For comparison, 
the iterative equation for the Southwell reconstructor is written 
here using the same format.

SOUTHWELL:

 

, , 1 , ,

, 1,

, ,

, 1 ,

, ,

1, ,

, , .

g i j i j g i j i j

g
y
x i j i j

g
y
x i j i j

g S i j S i j x

g S i j S i j x

g
y
x S i j S i j

y

g
y
x S i j S i j

y

1

1

2

1
2

2

1
2

x x

x x

y y

y y

2

2

2

2

L R

U

D

L

R

U

D

- - -

- -

-

-

-

-

-

{ { { {

{ {

{ {

D

D

D

D

D

D

D

D D

D

D D

+ +

+

+ +

= +

+ +

+ +

+ +

t t t t

t t

t t

_ _ _ _

d _ _

d _ _

_ _

_ _

d _ _

d _ _

i i i i

n i i

n i i

i i

i i

n i i

n i i

8 8

8

8

8

8

8

8

B B

B

B

B

B

B

B

 

(24)

The same successive-over-relaxation technique15 can be 
applied to the Simpson iterative reconstructor:

 , , , , ,i j i j i j i jm m m m1 -{ { ~ { {= ++t t t t_ _ _ __ _ _ _i i i ii i i i: D  (25)

Figure 127.22
Simpson iterator geometry.
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where
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Here, ~ is the over-relaxation parameter; gl is (Dx/Dy)2 • g.

2. Frequency Response and Regularization
The frequency response of the Simpson reconstructor will be 

calculated following the method presented in Ref. 11. The sum 
of the squared error in the spatial domain in Eq. (22) is equiva-
lent to the sum of the squared error of the Fourier-transformed 
component by the Parseval theorem:
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The solution for {tu in Eq. (28) is
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As S ikx x{=u u and ,S iky y{=u u  the frequency response H defined 
as the ratio of the reconstructed wavefront amplitude to the true 
wavefront amplitude associated with the measured slopes at a 
given spatial frequency point is
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where new notations Dx,0 and Dy,0 were introduced in place of 
ikx and ,iky  respectively.

Applying the Simpson derivative and average operators 
[Eqs. (29) and (30)], we obtain
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where 2k x fx x x/ ~ rD =  and ,k x f2y y y/ ~ rD =  fx and fy are 
normalized frequencies ranging from –0.5 to 0.5. It is assumed 
Dx = Dy. The frequency response of HSimpson has eight sin-
gularities on the four corners and side centers. Except for the 
region near the poles, the frequency response is nearly unity 
everywhere, which proves higher accuracy of the Simpson 
rule than the traditional reconstructors over all spectrums in 
wavefront reconstruction (refer to Fig. 1 of Ref. 11).

The singularities can be removed by introducing the fol-
lowing Phillips regularization term16 to the right-hand side 
of Eq. (22):
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In the frequency domain, this transforms into
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and similarly for Dy,reg.

The denominator of the Simpson frequency response will 
have an additional term of D D, ,x y

2 2
reg regm +a k that removes 

the singularity. The regularized frequency response is
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The 1-D frequency response with the regularization term has 
a second peak near high spatial frequency for sufficiently small 
m (<0.08) [Fig. 127.23(b)]. The free parameter m can be fixed to 
a value such that the second peak is 1. The numerically deter-
mined value of m for such a condition is 0.07489. This choice 
of m gives only a 3% error in wavefront amplitude over 80% of 
the frequency range. Another choice can be m = 0.07026, which 
balances the local maximum and minimum around 1. The sec-
ond option reduces the maximum deviation below 2.2% within 
85% of the spectral range. Figure 127.23(a) shows a 3-D view 
of the frequency response of the Simpson-rule reconstructor 
with m = 0.07489. The 1-D response is shown in Fig. 127.23(b). 
The solid line was calculated from an analytic expression 
[Eq. (36)], whereas the circles are from numerical simulations. 
The numerical simulation consists of steps of generating slopes 
from sinusoid wavefronts at a given spatial frequency and of 
reconstructing the wavefront and comparing the ratio between 
the original and the reconstructed wavefront amplitude at that 
frequency. The reconstruction algorithm used in the simulation 
will be explained in detail in the following section. The result 
shows good agreement with the analytic curve.

3.  Iterative Algorithm with Regularization Terms
The frequency-domain analysis does not give a detailed 

picture of how the successive-over-relaxation method can be 
applied in spatial-domain iteration, especially around the mea-
surement boundary. Resolving the stationary condition with the 

regularization term gives additional terms on the left-hand side 
of Eq. (23). These are fully written out using g flags:
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(38)

gLR or gUD is 1 only if two points exist to the right and left 
or up and down, respectively, and zero otherwise. The iteration 
formula (26) will be modified to
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Figure 127.23
Frequency response of Simpson reconstructor with m = 0.07489. (a) A 3-D view of the frequency response; (b) cross section along fx axis. The solid line was 
calculated from the analytic expression; the circles are from simulations of Simpson iterator geometry.
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Hexagonal Band-Limited Reconstructor
Band-limited reconstruction provides a unity frequency 

response over all spatial bandwidths. The band-limited recon-
structor for the Southwell geometry was presented in Ref. 11. 
It was shown that band-limited derivative operators are also 
available for Hudgin and Fried geometries. Table 127.II sum-
marizes the three operators depending on the geometry.

Thex is a matrix whose size is M by N (i.e., the size of either 
array 1 or array 2) and “%” denotes entry-wise matrix multipli-
cation. The pth row and qth column element of Thex is

 S, .expT p q
M
i p i qhex - -
r

r=_ _i i: D  (42)

The combined total array is therefore a vertical concatena-
tion of the two matrices. On the other hand, the resulting total 
matrix for Fig. 127.24(b) geometry is a horizontal concatenation:

Dx
(a)

Dy

E19859JR

(b)
Dx

Dy

Figure 127.24
(a) Prostrate hexagon array; (b) standing hexagon array.

Table 127.II:  Summary of band-limited derivative operators (Dx,0).

Geometry Dx,0

Southwell ikx

Hudgin expik ik x 2x x D_ i8 B

Fried expik ik x ik y2 2x x yD D+_ _i i8 B

Here we present band-limited reconstructors for hexagonal 
arrays. Hexagonal geometry may be well suited for adaptive 
optic systems for large telescopes with hexagonal mirror 
arrays (e.g., James Webb).17 Large deformable mirrors used 
in some laser fusion facilities (National Ignition Facility)18 
also have hexagonal actuator patterns. The number density 
of lenslets is slightly higher in hexagonal geometry than 
square. Figure 127.24 shows two possible hexagonal arrays. In 
Fig. 127.24(a) the unit hexagon is lying on its facet, whereas in 
Fig. 127.24(b) the unit hexagon is standing on the apex. The 
circles indicate the measurement points and the #’s are recon-
struction points. In Fig. 127.24(a) geometry, the band-limited 
derivative calculation for the indicated square array involves 
first grouping the slopes measured at red- and black-circled 
positions. Marking them as index 1 and 2, respectively, the 
DFT’s of slopes at the reconstruction points are
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(43)

 S, .expT p q i p
N
i qhex - -r
r=_ _i i: D  (44)

The same combination rule applies to y-slope measurements. 

The above decomposition technique can be inverted such 
that each subgroup of the hexagonal array can also be expressed 
as the linear sum of blocks I and II of the rectangular array. 
This inversion is used only for wavefront points in the algo-
rithm, which is

 ,
2
1

1 I II{ { {= +_ iP O Q  (45)

 .T
2
1 *

2 hex I II%{ { {= +_ iP O Q  (46)

Using the basic results obtained in Band-Limited Deriva-
tive (p. 130) and the DFT procedures for the hexagonal arrays 
in this section, the band-limited reconstruction algorithm for 
hexagonal slope arrays can be implemented as shown in the 
flowchart in Fig. 127.25.

Step 1 consists of fitting the slopes over low-order polynomi-
als, e.g., third order, which will significantly reduce non-band-
limited components of the wavefront. If the regions of interest 
are disconnected, the fitting must be performed per each region. 
Owing to the sum requirement [Eq. (3)], a column and row are 
appended to the edge of the measured slope matrices (groups 1 
and 2 separately), which will satisfy the zero-sum conditions 
in the x and y directions. 

Step 2 initializes the slopes with measured values. Steps 3–8 
form a closed loop required for extrapolating slopes outside 
the non-rectangular region. The iteration is not required if the 
region is rectangular.

Slopes in groups 1 and 2 are separately Fourier transformed 
using Eqs. (40)–(43) in Step 3. In Step 4, wavefront matrices 
corresponding to each block (I or II) are reconstructed in the 
Fourier domain using the band-limited filter function, which is 
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where the band-limited derivative operators Dx and Dy are 
defined as

{I = F (Sx,I,Sy,I) 

{II = F (Sx,II,Sy,II) 

E19860JR

x,y ∈ X1:   S1x[y] = S1x[y],m
x,y ∉ X1:   S1x[y] = 0
x,y ∈ X2:   S2x[y] = S2x[y],m
x,y ∉ X2:   S2x[y] = 0

x,y ∈ X1:   S1x[y] = S1x[y],m
x,y ∉ X1:   S1x[y] = no change
x,y ∈ X2:   S2x[y] = S2x[y],m
x,y ∉ X2:   S2x[y] = no change
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Sx[y],I = S1x[y] + Thex% S2x[y]
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1
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• Low-order polynomial fit
• Slope periodicity

Figure 127.25
Flowchart of band-limited reconstruction for a hexagonal geometry. F is the 
band-limited filter function [Eq. (46)]. The “m” subscript denotes the measured 
slopes. IDFT stands for inverse discrete Fourier transform. X1 and X2 are the 
regions where the slopes’ groups 1 and 2 data exist. 
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for a prostrate hexagon array and
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D
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for a standing hexagon array.

Step 5 creates wavefront groups 1 and 2 by using Eqs. (51) 
and (52). In Steps 3 and 5, the correct Thex must be used accord-
ing to its geometry. In Step 6, derivative operators are applied to 
these temporary wavefront matrices to obtain slopes in groups 
1 and 2, respectively. These new slopes are different from the 
measured slopes. We leave the values external to the boundary 
untouched while restoring the internal values to the original 
measured slopes. The difference between the measured slopes 
and the calculated slopes decreases over the course of iterations. 
Step 8 determines whether this difference is within tolerance. 
Once the convergence criterion is met, the wavefront matrices 
generated in Step 4 ,I II{ {_ iO Q  are combined to form a single 
matrix by either vertical or horizontal concatenation, depending 
on the hexagon geometry and inverse Fourier transformed to 
the spatial domain to produce the final result in Step 9. Small 
terms in the imaginary part of the solution can be neglected.

The band-limited algorithms shown in Fig. 2 of Ref. 11 and 
Fig. 127.25 can be used together with a non-band-limited filter 
function, which enables one to conveniently switch between 
different algorithms. The reconstruction algorithms proposed 
here are not limited to a specific boundary shape.

Error Propagation
The wavefront reconstructors have traditionally been 

characterized with a so-called error propagation curve. This 
indicates the sensitivity of the noise in the reconstructed phase 
to the noise in the slopes measurements. Early numerical and 
theoretical works show that this sensitivity is a logarithmic 
function of the number of measurement points.1,2,15 Simula-
tions confirm this. The noise-propagation coefficient will be 
calculated using discrete samples and frequency-domain filter 
functions. We limit the scope to the rectangular area.

Let v{ be the root mean square of the reconstructed phase 
{. According to the Wiener–Khintchin theorem,

 ,
N N N

1 1
t t

2 2
2

2
v { {D D= ={

R//  (52)

where G.H denotes ensemble average of the quantity inside.

According to linear stochastic system theory, the power 
spectrum of input and output signals is related by the absolute 
square of the linear system function. In the case of wavefront 
reconstruction dictated by the linear response
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the corresponding stochastic response in power spectrum is
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Assuming that SxDO and SyDO are uncorrelated white noise 
with a variance of S

2vu  for each, and since ,N1S S
2 2v v= u_ i  the 

noise-propagation coefficient is

,
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(55)

where ,N1 t
2 2
v {D={ ` j R  h = Dx = Dy, and L is the aperture 

size. This result is equivalent to Noll’s19 in the case of band-
limited operators.

Table 127.III summarizes finite-difference derivative/aver-
aging operators for four geometries to be used with Eq. (55).

The right-hand side of Eq. (50) is inversely proportional to 
D D, ,x y0

2
0
2+  for band-limited reconstruction and is dif-

ficult to visualize in linear scale. We define a “noise-response 
function (SN)” with the inverse power dependence removed 
as follows:
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It can be shown by the Cauchy–Schwartz inequality that the 
noise response is always larger than or equal to the absolute 
frequency response squared,

 .H SN
2
#  (57)

The inequality [Eq. (52)] shows that the error propagation is 
intimately related to the frequency response of a reconstructor. 
The lower bound of h is

 .
k k

H

k k

S

, ,x yk k x y

N

k k
2 2

2

2 2
x y x y

# h
+ +

=/ /  (58)

From this, one can expect that the Southwell reconstructor 
will have the lowest lower bound and the Fried reconstructor 
the highest. It agrees with the result of Zou.20

The analytic expression for h can be calculated and fit to a 
logarithmic curve, although the logarithm dependence is only 
approximate except for the band-limited reconstructors. The 
result is summarized in the second column of Table 127.IV. 
Singularity points were excluded in the summation over spatial-

Table 127.III:  Summary of frequency-domain equivalents of the associated finite-difference schemes.

Finite-difference scheme Dx Ax

Southwell14
exp

x
ik x1 1x -

D
D_ i8 B exp ik x

2
1 1xD +_ i8 B

Hudgin2
exp

x
ik x1 1x -

D
D_ i8 B 1

Fried1
exp exp

x
ik x ik y

2
1 1 1x y-
D

D D +_ `i j8 9B C 1

Simpson exp exp
x

ik x ik x
2
1

x x- -
D

D D_ _i i8 B exp expik x ik x
6
1 4x x-D D+ +_ _i i8 B

Table 127.IV:  Summary of noise propagation.

Numerical Scheme Calculated h Simulated h Quoted h

Southwell difference –0.1211 + 0.1591 lnN 0.1356 + 0.1638 lnN –0.1237 + 0.3164 lnN

Hudgin difference 0.0485 + 0.1592 lnN 0.3456 + 0.1528 lnN 0.561 + 0.103 lnN

Fried difference –0.0865 + 0.3202 lnN — 0.6558 + 0.3206 lnN

Band limited –0.0285 + 0.1594 lnN 0.2449 + 0.1615 lnN 0.1072 + 0.318 lnN

Simpson difference 0.0314 + 0.1610 lnN 0.3125 + 0.1647 lnN —

frequency space. The third column shows the simulated h 
obtained by running actual reconstructors with zero slopes input 
with Gaussian noise. Two hundred realizations were performed 
at each N, where N2 is the number of points. N was varied from 
10 to 100 by 10. The logarithm fit over the averaged h is shown 
in the column. The multiplicative coefficients roughly agree 
with the analytic ones up to the second decimal point, but the 
additive constants from simulation are always estimated higher 
than the calculated ones. The offset is about 0.2771 on average. 
The discrepancy appears to come from the apparent inconsis-
tency in assuming white noise in the slopes power spectrum and 
the use of band-limited derivative formalism. For example, the 
reconstructed wavefront from white spectrum noise always has 
some amount of low-order polynomial terms, which cannot be 
represented by Eq. (48). The constant offset 0.2771 therefore 
can be considered as the ratio of energy conversion from white 
noise to non-band-limited signals.

The legacy formulas of noise propagation for each recon-
structor are also shown in the fourth column of Table 127.IV, 
quoted from the three authors’ original publications.1,2,15 The 
quoted Southwell h is estimated only from the graph in the origi-
nal paper since no explicit formula was given. Noll’s calculation 
essentially corresponds to the band-limited case. Considering 
the fact that there is some ambiguity in the determination of 
the constant offset, at least the multiplicative coefficient of the 
Fried formula comes close to our analytic result; whereas there 
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is about a factor-of-2 difference in the Southwell and Noll’s 
expression compared with ours. On the other hand, Hudgin’s 
formula does not agree with our results. Fried’s formula is based 
on a comparatively large number of N (#39) compared with 
Southwell and Hudgin’s calculations (N # 20).

Conclusion
We have presented derivations of band-limited derivative 

operators in the frequency domain. These are important tools 
for characterizing and improving the frequency response of 
wavefront reconstructors over broad bandwidth. Two new wave-
front reconstructors were proposed utilizing these tools. The 
reconstructors were designed to be accurate up to high spatial 
frequency. The first one is based on the Simpson integration 
rule. The bandwidth of the frequency response of this recon-
structor, after being regularized, is excellent up to 85% of the 
spatial frequency range. A successive-over-relaxation iterative 
solver was presented in detail, where the outermost samples 
are elegantly handled using g flags. The frequency-response 
behavior of the iterative solver agrees well with the predicted 
frequency-response curve. The second reconstructor is an 
extension of the band-limited reconstruction algorithm previ-
ously developed; the measurement points are on a hexagonal 
array instead of a rectangular array. A Fourier-domain iterative 
algorithm was proposed for two types of hexagonal arrays. As 
was previously pointed out in Ref. 11, the reconstruction pro-
cess must be preconditioned with the low-order polynomial fit. 
The Simpson-rule–based algorithm works purely in the spatial 
domain; therefore, it is computationally less complex than 
band-limited algorithms, whereas the latter provides flexibil-
ity against any geometry change. Fourier-domain algorithms 
have a potential of boosting reduction speed with the help of 
digital-signal processors.

The new wavefront reconstructors are compared with the 
traditional reconstructors in terms of noise-propagation prop-
erties through a generalized noise-propagation expression. 
The analytically calculated noise-propagation coefficients are 
consistent with the numerical fit deduced from our own simula-
tions. We did not find, however, universal agreement with the 
published results. 

The broad-bandwidth wavefront reconstructors developed 
here are used in wavefront-reduction software to characterize 
focal spots of the OMEGA EP laser beams.13 The importance 
of the band-limited reconstructor was well illustrated in Ref. 21 
for a closed-loop wavefront-shaping application. One may also 
find applications in the study of metrology and atmospheric 
turbulence.22
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