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Introduction 
Ultrafast laser systems generate intensities at focus as high as 
1022 W/cm2 for a variety of relativistic and high-energy-density 
physics applications. Although several types of amplifiers are 
used, all systems use chirped-pulse amplification (CPA) to 
overcome limits caused by optical damage and nonlinearities.1 
CPA uses stretchers and compressors to modify the pulse’s 
spectral phase, increasing its length and lowering the peak 
power within the amplifier chain. Stretchers and compressors 
typically rely on diffraction gratings to geometrically disperse 
the pulse into spectral components.2 Imperfections at optical 
surfaces where the pulse is dispersed imprint directly onto 
the spectral phase. The group delay of a spectral component 
equals the derivative of its phase, and therefore high-frequency 
phase noise scatters energy before and after the main pulse.3–6 
(This effect is directly analogous to the halo formed around 
the far field of a lens by high-frequency wavefront noise in the 
near field.7) Any portion scattered before the peak of the pulse 
that exceeds 1011 W/cm2 is capable of ionizing solid targets. 
Therefore, care is needed when selecting stretchers and com-
pressors to ensure they do not degrade the temporal contrast 
of the laser system, defined as the ratio of the peak of the pulse 
to the low-intensity pedestal.

This article presents a theoretical analysis of the impact of 
high-frequency spectral phase modulation on the temporal con-
trast of ultrafast pulses. A three-dimensional (3-D) treatment 
is used to extend the results of Ref. 8. The temporal contrast is 
evaluated in the focal plane, the target location for ultra-intense 
experiments. The spectral phase imprint in the near field of a 
spectrally dispersed beam produces space–time coupling in 
the far field or focal plane. The pedestal is swept across an 
area in the focal plane many times the size of the diffraction-
limited spot. These phenomena raise questions about the 
validity of applying measurements made in the near field (the 
usual domain for high-dynamic-range cross-correlators) to the 
target plane. 

A general model is used in the next section to propagate 
a spectrally dispersed beam through a noisy phase screen. 

Temporal Contrast Degradation at the Focus of Ultrafast Pulses 
from High-Frequency Spectral Phase Modulation

Expressions are derived for the average intensity of an ultrafast 
pulse in the near and far fields. In subsequent sections, closed-
form results are obtained for Gaussian functional forms that 
show the impact on temporal contrast of the scale of optical 
surface modulation, the beam size, and the scale of geometric 
dispersion in the near field. Analytic results are compared to 
numeric simulations, and the numeric analysis is extended to 
include the usual Lorentzian functional form of the power spec-
tral density of optical surfaces. Simulation results are presented 
for generic stretchers and compressors that show fundamentally 
different properties of the temporal contrast at the focal plane.

General Expressions for the Temporal Contrast  
in Near and Far Fields
1. Model

A general schematic of an optical device for spectral phase 
modification is shown in Fig. 127.9(a). A beam of optical 
pulses passes through a subsystem that spreads the spectral 
components using geometric dispersion. The phase of each 
spectral component is modified using phase screens or other 
optical systems before a second dispersive component is used 
to recombine them. Optical pulse stretchers and compressors 
are examples of this type of device. They modify the chirp of 
ultrafast pulses by adding or subtracting large, predominantly 
quadratic spectral phases. High-frequency imperfections in the 
surface quality of their optics produce unwanted phase modula-
tion. In this article, such imperfections are modeled by adding 
noisy phase screens to otherwise ideal systems.

A focusing element located in the near field focuses the 
beam in the far-field plane. The near-field spatial coordinates 
are (x,y). The far-field wave-vector components (u,v) are related 
to the spatial coordinates (x l, yl) by the focal length f and wave 
number k = 2r/m according to u = kxl/f. Figure 127.9(b) shows 
a Gaussian spectrum spread across the near field. The map-
ping of spectral components onto the x axis is assumed to be 
linear. The center of the beam x0 and a given optical frequency 
~ are related by

 ,x0 ~ c~=_ i  (1)
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Figure 127.9
(a) Generic schematic of a system that imprints spectral phase noise on an optical pulse propagating with a finite beam size. The near-field spatial coordinates 
are (x,y) and the far-field wave-vector components are (u,v). Three important scale lengths are (1) cD~, the spatial width of the dispersed spectrum; (2) W, the 
beam size; and (3) lc, the correlation length of the phase noise. (b) Gaussian spectrum plotted against the near-field coordinate x; c = 0.44 mm/THz and D~ = 
100  THz, corresponding to a 17-fs pulse width. (c) Simulated phase screen z(x,y) and beam locations for optical frequencies marked in (b). Scale lengths are 
W = 10 mm, lc = 0.5 mm, and cD~ = 44 mm.
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where c is the spatiospectral coefficient. The optical frequency 
~ is defined as the offset from a central frequency ~0, which 
was arbitrarily chosen to correspond to a central wavelength 
of 910 nm throughout this article.

Figure 127.9(c) shows a simulated realization of a random 
phase screen, z(x,y). The circles denote the beam locations for 
the spectral components marked on Fig. 127.9(b). Three scale 
lengths are shown that are key to understanding the impact of 
phase noise on temporal contrast:

 cD~ – the optical bandwidth (1/e half-width), scaled onto 
the near-field axis

 W – the beam size (1/e intensity half-width)
 lc – the correlation length of the phase noise

Here, lc can be defined in terms of the correlation function

 , , , , , .x x y y x y x yC *z z=l l l l_ _ _i i i  (2)

For a homogeneous, isotropic Gaussian phase screen, the cor-
relation function is related to the correlation length by

 , ,expx y
l

x y

2
C

c

2
2

2 2

-vD D
D D

=
+

_ fi p  (3)

where Dx = x – x', Dy = y – y', and v is the rms (root mean 
square) phase of the screen in radians. Depending on the design 
of the device, the three scale lengths may differ by an order of 
magnitude or more.
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2. Average Far-Field Intensity
In the spectral domain, the optical field of the pulse in the 

near field is given by

 , , , , ,E x y E x y e , ,i x y
0~ ~= ~Uu u_ _ _i i i  (4)

where , ,E x y0 ~u _ i is the input pulse. The spatiospectral phase 
function U(x,y,~) is related to the phase screen using Eq. (1):

 , , , , .x y x x y x y0- -~ z z c~U = =_ _ _i i i  (5)

In the limit of small phase modulation (z % 1), the exponential 
in Eq. (4) is approximated to give

 , , , , , .E x y E x y i x y10 -~ ~ z c~= +u u_ _ _i i i8 B  (6)

The optical field in the time domain is obtained by a Fou-
rier transform:
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(7)

In the far field of a focusing element, the optical field can be 
expressed in terms of wave-vector components (u,v), as denoted 
in Fig. 127.9(a). The double Fourier transform of Eq. (7) gives
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The intensity in the far field is v v, , , , .I u t E u t
2

= {_ _i i  Averaging 
over an ensemble of phase screens for which Gz(x,y)H = 0, the 
average intensity in the far field is
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(9)

Using a coordinate transformation and completing four inte-
grals [see Appendix A (p. 128)], the average far-field intensity 
can be written in terms of the power spectral density (PSD) of 
the phase screen:
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Equation (10) is an integral expression for the average far-field 
intensity given the PSD of the phase screens and I0, the far-
field intensity without a phase screen. Further analysis is only 
possible if one assumes functional forms for the integrand.

3. Average Near-Field Intensity
An expression for the average intensity in the near field 

can be derived using a similar formalism. One starts with an 
expression similar to Eq. (9), but with all quantities defined in 
the near field, thereby eliminating the four integrals over the 
near-field coordinates:
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In this case, it is convenient to use a one-dimensional (1-D) 
correlation function where the near-field coordinates (x,y) are 
parameters:
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 , , .C x y x y*
xy - -~ z c~ z c~D = l_ _ _i i i  (12)

Performing the same coordinate transformation as outlined in 
Appendix A (p. 128), replacing the 1-D correlation function 
with its Fourier transform PSDxy, and completing integrals of 
exponentials and a delta function give the following:

, , , , , , .I x y t I x y t t I x y t t td PSDxy0 0 -= +
-3

3

l l l_ _ _ _i i i i#  (13)

That is, the average near-field intensity has an additional 
term as a result of phase noise that is the convolution of the 
noise-free intensity and the 1-D power spectral density. This 
near-field result is similar to that derived in Ref. 8, but without 
the stated approximations.

The connection between the two-dimensional (2-D) and 1-D 
PSD functions, PSD(u,v) and PSDxy(t), is derived in Appen-
dix B (p. 129) and is 

 v v, .t t1PSD d PSDxy c c=
-3

3

_ _i i#  (14)

That is, the 1-D temporal PSD is proportional to the integral 
of the 2-D spatial PSD over one spatial frequency axis after 
the other axis—the one that defines the plane of geometric 
dispersion—is replaced by the scaled time axis using u = t/c.

Analytic Expressions Assuming Gaussian  
Functional Forms

It is instructive to consider the case where all quantities are 
Gaussians. That is, the 2-D PSD function of the phase screen 
has a Gaussian functional form, as well as the beam profile 
and the pulse shape. In this case, the integral expressions for 
the average intensity in the far field [Eq. (10)] and near field 
[Eq. (13)] can be reduced to closed-form analytic expressions. 
The PSD is the Fourier transform of Eq. (3):

 v v, .expu
l

l u
2

2PSD
2 2

2 2 2c
c-r

v
= +_ _i i: D  (15)

The noise-free intensity is 

 v v, , ,expI u t I t W u W0
2 2 2 2 2 2

P - - -~D=^ _h i  (16)

where IP is the peak, on-axis intensity at u = v = t = 0. The pulse 
width x0 (defined as the half-width at the 1/e intensity) is equal 
to 1/D~. Similarly, the width of the focal spot, w0 (defined as 

the half-width at 1/e intensity), is equal to 1/W. Substitution 
into Eq. (10) gives
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(17)

The second term is the low-intensity pedestal that is produced 
by the phase screen. The magnitude of the pedestal scales with 
the variance of the phase, v2. One limit that is often the case 
for stretchers and small-scale compressors is that the spatial 
spread of the spectrum across the phase screen (cD~) is much 
larger than both the input beam size (W) and the correlation 
length (lc). Typical values for the three quantities are of the 
order of 100 mm, 1 mm, and 100 nm, respectively. Using this 
limit, the far-field intensity can be approximated as
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(18)

The expression for the near-field intensity has a similar form, 
where IP is the peak intensity in the near field:

, , , , , .expI x y t I x y t I x y
l l t

2 2
0

2

2

2 2

P
c c-
c ~

v

cD
= +_ _ ^ fi i h p  (19)

There are several important differences between these two 
expressions. First, the noise-dependent terms at the peak of 
the pulse differ by the factor .l W2c  Typically this factor 
is much less than unity. Therefore one could expect a much 
smaller on-axis, noise-dependent contribution in the vicinity 
of t = 0 in the far field than in the near field. 

The second and more significant difference is the presence 
of the space–time coupling term in the exponent: –W2(u + t/c)2. 
As a result, the maximum far-field intensity of the pedestal 
at a given time corresponds to a different transverse location 
in the far field. The location is determined from the equation  
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u = –t/c. More general results, discussed below, support this 
conclusion. This space–time coupling is analogous to that 
reported in certain types of pulse shapers.9 In summary, these 
analytic results, although derived specifically for Gaussian 
functional forms, show that one should expect large differences 
between the temporal contrast in the near and far fields.

Comparison of Analytic Results  
and Numerical Simulations

The analytic expressions were tested against numerical 
simulations of spatially dispersed ultrafast pulses propagat-
ing through phase screens. Table 127.I shows default model 
parameters, unless explicitly specified. The 2-D PSD func-
tion was used to generate a random phase screen of Gaussian  
random numbers over the entire near-field plane in the dis-
persed region.10 An input beam was dispersed into spectral 
components that were incident on different sections of the phase 
screen, as shown in Fig. 127.9(c). Beams of each component 

Table 127.I:  Default simulation parameters used in this article, unless explicitly specified.

Parameter Symbol Value Parameter Symbol Value

Center wavelength m0 910 nm Time step dt 8 fs

1/e pulse half-width x0 10 fs Number of time steps NT 212

Near-field beam size W 1 mm Near-field step dx 84 nm

Spatiospectral coefficient c 0.44 mm/THz Number of steps across beam NX 28

rms phase v 0.04 rad Frequency step d~ 0.19 THz

Correlation length lc 100 nm Phase screen dimensions xmax,ymax 360 # 21 mm

were modulated by the screen and then propagated to the far 
field using 2-D fast Fourier transforms (FFT’s). Each spectral 
component was added coherently. The far-field intensity at 
each position (u,v,t) was calculated as the magnitude of the 
total field squared. To avoid noise from interpolation, the near-
field and spectral sampling intervals were matched using the 
spatiospectral coefficient so that dx = cd~.

Figures 127.10–127.12 compare numerical simulations to the 
analytic results for Gaussian functional forms. The near-field 
average intensity in the x–t plane is shown in Fig. 127.10(a). 
The intensity is plotted on a logarithmic scale in dB rela-
tive to the peak. The narrow peak down the center around 
t = 0 is the intense, noise-free term I0(x,y,t) in Eq. (19). The 
low-intensity pedestal comes from the second, PSD-driven 
term. In Figs. 127.10(b)–127.10(d) numerical simulations for 
a single-phase screen realization and the analytic average are 
compared at three different x positions in the near field. While 

Figure 127.10
(a) Near-field average intensity in the x–t plane 
calculated using Eq. (19). The main pulse I0(x,y,t) 
is the red line at t = 0 ps. [(b),(c),(d)] Analytic 
(blue) and numeric (red) values of intensity 
calculated at different x values.
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Figure 127.11
(a) Far-field average intensity in the u–t 
plane calculated using Eq. (18). Space-time 
coupling in the noise-dependent term follows 
the black line, u = –t/c. [(b),(c),(d)] Analytic 
(blue) and numeric (red) values of intensity 
calculated at different u values.
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the numerical results (red lines) have high-frequency structure, 
which is a consequence of using a single-phase screen realiza-
tion, their overall profile follows the analytic results (blue lines). 

Results calculated for the far field in the u–t plane, using 
Eq. (18), are shown in Fig. 127.11. The space–time coupling 
between u and t appears as a diagonal noise-dependent contri-
bution to the intensity that follows u = –t/c. As a consequence, 
the slices at different u positions show a temporal displacement 
of the noise-dependent term. In contrast, plots in the v–t plane 
(Fig. 127.12) do not show space–time coupling. The v axis is 
conjugate to the y axis, which is orthogonal to the plane of 
spectral dispersion. 

The temporal narrowing on axis in the far field (u = 
v = 0) depends on W, the size of the beam in the near field. 
Figure 127.13 shows results for four values of W. The far-field 
intensity approaches the near-field result as the size of the beam 
is reduced from 3 to 0.1 mm. In this small-beam limit, each 
spectral component samples only a small portion of the screen, 
and the statistics become identical to the 1-D case for the near 
field. The beneficial effect of averaging the phase contributions 
over multiple correlation lengths no longer occurs, and the on-
axis contrast is reduced. 

The numeric results have high-frequency structure because 
they used a single realization of the phase screen. Averag-
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Figure 127.12
(a) Far-field average intensity in the v–t plane 
calculated using Eq. (17). [(b),(c),(d)] Analytic 
(blue) and numeric (red) values of intensity 
calculated at different v values.
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ing over multiple pulses (each calculated using a different 
phase screen) increases the level of agreement between the 
numeric and analytic results in both the near and far fields 
(see Fig. 127.14).

general, the intensity-probability distribution for the coherent 
addition of two beams, one uniform and one statistically fluc-
tuating with a uniform phase distribution [0,2r], is given by11

 ,Iexpp I
I

r
I
I rI I1 20- -=_ e ai o k  (20)

where I0 is the modified Bessel function of the first kind of 
order zero and .r I I0=  At times where the intensity of the 
noise-free pulse, I0, is much less than that of the pedestal, the 
parameter r % 1 and Eq. (19) may be approximated by
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Figure 127.15
Average on-axis intensity calculated either by averaging in time (rectangular 
window, T) or over an ensemble of phase maps (N). (a) Near-field intensity: 
T = 200 fs, N = 200; (b) far-field intensity: T = 40 fs, N = 200.
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Figure 127.13
On-axis temporal intensities for Gaussian functional forms and a range of 
near-field beam sizes (W). The on-axis far-field contrast increases with the 
beam size.

In principle, there can be significant differences between 
temporal and ensemble averages for non-ergodic phenomena. 
Since a laser’s stretcher or compressor typically uses static 
optics, an ensemble average over many phase screens is not 
relevant. Intensity averaging in time may occur, however, 
depending on the nature of the interaction with a target. The 
physical processes may not respond quickly enough to follow 
the high-frequency temporal modulation. In this case, the 
relevant quantity is the temporal average of the intensity over 
the response time of the interaction. 

Figure 127.15 shows on-axis plots of the intensity in the near 
field and far field. The red line is a box-car average in time of 
the temporal intensity from a single realization of the phase 
screen. The black line is an ensemble average over pulses that 
were each calculated using an independent realization of the 
phase screen. The overall profiles are similar; therefore, one can 
treat intensity noise from phase screens in spectrally dispersed 
beams as an ergodic process.

The statistical nature of the intensity fluctuations at a given 
time may be relevant if the target interaction is nonlinear. In 

Figure 127.14
On-axis temporal intensities for Gaussian functional forms. Near-field results 
for (a) one phase screen and (b) an ensemble average of pulses for 25 phase 
screens. Far-field results for (c) one phase screen and (d) an ensemble average 
of pulses for 25 phase screens.
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 .expp I
I I

I1 -._ ei o  (21)

Figure 127.16 shows the probability density of the intensity in 
both the near and far fields at t = 250 fs, calculated using an 
ensemble of phase maps. The numeric results for 200 phase 
screens are in agreement with the probability calculated using 
Eq. (21), shown in red.
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Figure 127.16
Intensity probability distributions at t = 250 fs for (a) the near field and 
(b) the far field.

Lorentzian PSD Functional Forms
Gaussian PSD’s are convenient for obtaining closed-form 

analytic expressions that show the relative impact of the three 
main scale lengths: cD~, W, and lc. In practice, however, opti-
cal surfaces do not have Gaussian PSD’s. More common are 
PSD’s with a Lorentzian functional form:12
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The parameter S is the asymptotic slope of the 1-D PSD func-
tion. Following Eq. (14), the 1-D PSD in the time domain is
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which scales as 1/tS for large times .t lc&c` j  Typical values 
of S are in the range of 1.5 to 1.6 (Ref. 12). Despite differences 
in the functional forms of the Lorentzian and Gaussian PSD’s, 
Fig. 127.17 shows that the nature of the near- and far-field tem-
poral intensities for Lorentzians is qualitatively similar except 
for a slower fall-off far from the peak.
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Figure 127.17
On-axis temporal intensity calculated in (a) near field and (b) far field for a 
Lorentzian PSD with v = 0.04 radians, lc = 100 nm, and S = 1.55.

Application of Results to Stretchers and Compressors
1. Systems with Multiple Elements 

Pulse stretchers and compressors are commonly used in 
ultrafast CPA laser systems to raise the limits for damage 
and nonlinearity in their optical amplifiers. Pulses must pass 
through an even number of dispersing elements such as gratings 
or prisms to eliminate residual angular dispersion. Additional 
optical components may be required in portions of the system 
where the pulse is geometrically dispersed; therefore their 
surface quality will affect the pulse’s temporal contrast. One 
example is the case of an Öffner stretcher.13 Here, two spherical 
mirrors are used to create an image of a diffraction grating at 
a “negative” distance from the object, resulting in net positive 
dispersion for the pulse. It has been shown that the surface 
quality of stretcher mirrors4 and gratings6 can have a significant 
impact on the temporal contrast of the pulse.

It is important, therefore, to be able to apply the preced-
ing results, derived for a single phase screen, to systems with 
several phase screens. If the phase screens are practically 
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Figure 127.18
Near-field quantities after spectrally dispersed propagation through a sinusoidal phase screen with a modulation period and amplitude of 450 nm and 0.5 nm, 
respectively. (a) The spectrum, (b) spectral phase, and (c) temporal intensity immediately after the screen. [(d),(e),(f)] The same quantities after propagating a 
distance of 1 m. There is complete conversion of phase-to-amplitude modulation at the peak wavelength of 910 nm.

coincident or imaged onto each other, their phases are summed 
using the appropriate spatiospectral coefficients, to get a total 
phase screen:

 , , , .x y x yn
n

ntotal -~ z c ~U =_ _i i/  (24)

If the phase screens are uncorrelated, the correlation function 
for the total phase reduces to a sum of correlation functions:

, , , , , .x y x y x yC*
n n

n
total total -~ ~ c ~U U D D D=l l l_ _ _i i i/  (25)

In the expressions for the average intensity in the near field or 
far field, the noise-dependent term becomes a sum over the 
PSD of each phase screen. For example, in the far field, the 
average intensity is
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Typically, however, the phase screens are not coincident or 
imaged onto each other. Significant distances of free propaga-
tion (of the order of a meter) are often required to obtain the 
desired amount of dispersion. In this case, propagation between 
the surfaces causes high-frequency phase modulation to be 
converted into amplitude modulation, and vice versa. The dis-
tance required for complete phase-to-amplitude conversion is 
derived from the Talbot effect and is equal to Dx2/2m, where Dx 
is the modulation period.14,15 The high-frequency modulation 
relevant to ultrafast pulse contrast may have periods as short as 
100 nm, for which the phase-to-amplitude conversion distance 
at 1 nm is only 5 mm. 

A full description, analytical or numerical, that includes 
diffraction is complicated. Such an approach, however, is 
not required when estimating the overall impact on temporal 
contrast from a series of phase screens. Although near-field 
propagation changes the fine-scale structure, it has only a 
minor effect on the average intensity. This is because amplitude 
modulation degrades the temporal contrast in a way that is very 
similar to phase modulation. This is shown in Fig. 127.18, where 
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Figure 127.19
Far-field intensity calculated in the u–t plane for two phase screens. (a) Simula-
tion results where phase screens were coincident, and (b) simulation results 
where phase screens were separated by Dz = 1 m. Each spectral field after 
the first phase screens was propagated to the second using a scalar Fresnel 
propagation code. The details of the intensity structure between (a) and (b) are 
different, but any differences between the average profiles are insignificant.
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the near-field properties of a pulse (spectrum, spectral phase, 
and temporal intensity) are shown at two distances from a 
sinusoidal phase screen with a 450-nm period. The simulations 
show clear evidence of phase-to-amplitude conversion after 
propagation over 1 m. The resulting satellite pulses, however, 
are qualitatively similar in magnitude and temporal location. 

This conclusion is reinforced in Fig. 127.19, which shows 
results from numeric simulations that included scalar Fresnel 
propagation between two Lorentzian phase screens. The dis-
tance between them was varied and the far-field intensity in the 
u–t plane was calculated. In one case, shown in Fig. 127.19(a), 
the two Lorentzian phase screens were coincident. In 
Fig. 127.19(b), the screens were separated by 1 m. Differences 
can be seen in the fine-scale structure, but the average far-field 
intensity is very similar, even though the separation between 
phase screens is orders of magnitude more than the coherence 
length, lc = 100 nm, and the beam size, W = 1 mm. 

For the remainder of this article, therefore, diffraction is 
not included when estimating the nature of temporal contrast 
degradation for standard stretcher and compressor designs. 
Instead, the contributions from each phase screen are added 
according to Eq. (26). 

2. Grating-Based Pulse Compressor and Öffner Stretcher
A schematic of a standard four-grating compressor is shown 

in Fig. 127.20(a). The gratings, G1 and G2, in the first pair 
geometrically disperse the input pulse into its spectral com-
ponents, which are recombined by the second pair. The group 
delay through the compressor for each component decreases 
approximately linearly with frequency, corresponding to nega-
tive dispersion.2,16 The magnitude of dispersion depends on the 
slant distances between the gratings in each pair, which are 
usually, but not always, matched.17 The compressor produces 
short pulses by compensating for the residual positive disper-
sion of the stretcher and amplifier glass. 

Nonuniformity in the optical surfaces of G2 and G3 imprints 
onto the spectral phase of the pulse. The two gratings can be 
modeled as perfect elements plus additional phase screens. A 
retroreflector, placed at the AAl plane to halve the number of 
required gratings, can potentially degrade the temporal contrast 
and would be treated as a third phase screen.

A simulation of the output far-field intensity is shown in 
Fig. 127.20(b). The PSD parameters for the gratings were 
chosen arbitrarily according to Table 127.I. In this device, the 

two phase screens have the same spatiospectral coefficient, 
y = 0.44 mm/THz, and therefore the noise contributions from 
each grating follow the same line u = –t/c.

The far-field intensity distribution for an Öffner stretcher is 
qualitatively different (see Fig. 127.21). In this device, positive 
dispersion is obtained using a primary and secondary mir-
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ror to form an image of a single grating, thereby achieving 
a negative separation distance.13 Modulation on the surfaces 
of the grating and primary and secondary mirrors produces 
spectral phase noise. A roof mirror (not shown) is typically 
used along the line AAl to retroreflect the beam at a different 
height back through the stretcher, eliminating spatial chirp. In 

this simulation, the spatiospectral coefficients c are 0.44, 0.22, 
and 0.40 mm/THz for the primary mirror, secondary mirror, 
and grating, respectively. 

The secondary mirror is located at a focal plane for each 
spectral component so, therefore, phase noise added to each 

Figure 127.20
(a) Schematic of a four-grating compressor, showing the input and output beams (black) and three spectral components. Modulation on the surfaces of G2 and 
G3 produces spectral phase noise. A roof mirror can be used along the line AAl to retroreflect the beam, halving the required number of gratings. (b) Far-field 
average intensity calculated using Lorentzian PSD’s in the u–t plane at t = 0. G2 and G3 have the same spatiospectral coefficient, c = 0.44 mm/THz. The black 
line corresponds to u = –t/c and tracks the peak intensity from the PSD term.
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Figure 127.21
(a) Schematic of an Öffner stretcher, showing the input beam (black) and three spectral components. (b) Far-field average intensity calculated using the same 
Lorentzian PSD for each optic in the u–t plane at t = 0.
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component is transferred directly to the system’s far field. The 
resulting pedestal is centered on the main focal spot (at u = 
v = 0) and can be calculated using Eq. (13), but with spatial 
coordinates (x',y') replaced with angular coordinates (u, v), 
where u = kx/f. The primary mirror and grating are located 
in the near-field planes, however, and therefore the pedestals 
that they produce are swept across the focal spot, as predicted 
by Eq. (10).

When identical PSD’s are assumed for all optics, the second-
ary mirror has the largest impact on the contrast degradation. 
This is fundamentally different than on a compressor, where the 
surface quality of all optics in the spectrally dispersed planes 
affects the contrast equally.

Conclusions
A theoretical study was presented on the impact of high-

frequency spectral phase modulation on the temporal contrast 
of ultrafast pulses. Expressions were derived for the intensity 
pedestal produced by optical surface roughness of compo-
nents within pulse stretchers and compressors. The average 
intensity in the far field—the target location for ultra-intense 
experiments—was evaluated. Analytic closed-form expressions 
show that spectral phase imprint in the near field of a spectrally 
dispersed beam produces space–time coupling in the far field. 
As a result, the low-intensity pedestal that precedes the peak 
of the pulse sweeps across the target, covering an area many 
times the diffraction-limited spot size. Simulations of standard 
stretcher and compressor designs show fundamentally different 
forms of temporal contrast degradation at focus. These observa-
tions raise interesting questions about the nature of the target 
interaction when such impairments are present and about the 
validity of applying measurements made in the near field (the 
usual domain for high-dynamic-range cross-correlators18) to 
the target plane. 
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Appendix A
Equation (10) is obtained from Eq. (9) by first replacing 

variable pairs such as x and x' with X and Dx, where X = x + 
x' and Dx = x - x'. The Jacobian of each transformation is 1/2. 
Equation (9) is then written as
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where the phase map has been assumed to be wide-sense 
stationary, so that 

 , , , .C x y x y x y*z zD D = l l_ _ _i i i  (28)

The integrals over X, X, and Y involve only the spectral near 
fields E0

u  and not the correlation function. Replacing these fields 
with their temporal Fourier transforms adds integrals over t' and 
tll to give a portion of the integrand of Eq. (27) that is
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(29)

Collecting exponential factors that depend only on X and com-
pleting the integral gives a Dirac delta function 2d(t'–tll). This 
allows one to evaluate the tll integral, giving
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That is, each field in Eq. (27) is replaced by its temporal Fourier 
transform, the integral over X is replaced by an integral over 
its conjugate variable, and a phase factor of 2eiD~t' is added. 
Repeating this operation for the integrals over X and Y gives 
the following equivalent expression for Eq. (29):
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Equation (27) is therefore rewritten as
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The integrals over Dx and Dy are Fourier transforms of the cor-
relation function, which is equal to the power spectral density 
of the phase screen and is defined as

 , , ,u x y C x y e ePSD d d i xu i yvv D D D D= - -
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3
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The remaining integral over D~ is evaluated to give the Dirac 
delta function d(t – t' + cu – cul). This makes it possible to 
complete the integral over t', which gives
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Appendix B
Equation (14) is obtained by first integrating the 2-D PSD func-

tion over v, the axis normal to the plane of geometric dispersion:
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The quantity in parentheses is equal to d(Dy), making it pos-
sible for the integral over Dy to complete. Finally, by noting 

that C(–cD~,0) = Cxy(D~), making the substitutions Dx = cD~ 
and u = t/c, and using the fact that

 ,Ct ePSD dxy xy
i t

~ ~D D= -

-3

3
~D_ _i i#  

one obtains the connection between the two PSD functions:

 , .t td PSD PSDv v xyc c=
-3

3

_ _i i#  (36)
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