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Introduction
Two-plasmon-decay (TPD) instability [the parametric decay 
of a laser (photon) into two Langmuir waves (plasmons)] has 
recently experienced renewed experimental and theoretical 
interest, largely based on recent experimental results obtained 
at the Omega Laser Facility.1–4 The TPD instability has been 
the subject of previous theoretical5,6 and experimental7 studies. 
Recent experiments using the OMEGA laser1 have produced 
unambiguous evidence that TPD is driven in both spherical and 
planar targets. The diagnostic evidence includes the simultane-
ous emission of odd half-harmonic radiation and hard x rays.1,8 
There is also some evidence2–4 that these hot electrons may 
be inhibiting the efficient implosion of spherical targets by 
preheating the core to a higher adiabat.

Although effort has been devoted to the linearized theory of 
the TPD instability in various regimes,5,6 it is clear, a priori, that a 
nonlinear theory is necessary to describe its evolution beyond the 
subpicosecond time to be relevant to experiments. This article is 
devoted to the development of a new theoretical tool for the study 
of the nonlinear development of TPD. It describes initial results 
from the implementation of the reduced particle-in-cell (RPIC) 
technique to treat the nonlinear evolution of TPD in homogeneous 
plasmas. The RPIC model is not limited to homogeneous plasma, 
and future work will include inhomogeneous plasma densities 
and flow velocities, which are present in experiments. The RPIC 
modeling and the closely related extended Zakharov (ZAK) 
modeling9 are useful tools for studying the nonlinear regimes of 
parametric instabilities. The RPIC and ZAK models have been 
previously applied to the nonlinear development of stimulated 
Raman scattering (SRS)10 and to the nonlinear development of 
the parametric decay instability (PDI).11 In these studies, nonlin-
ear processes such as the Langmuir decay instability (LDI) [the 
parametric decay of a Langmuir wave (LW) into another LW and 
an ion-acoustic wave (IAW)], Langmuir cavitation, and electron 
trapping have been observed to compete. Several predictions of 
this modeling have been experimentally verified.12

The RPIC model, while fully kinetic in regards to both 
electron and ion dynamics, shares certain features with the 

reduced, fluid-like ZAK modeling.13 Both models represent 
the transverse fields, longitudinal fields, and density fields in 
terms of slowly varying envelopes of rapidly oscillating phase 
factors. This approach assumes a well-defined separation of 
time scales between the laser, LW, and IAW oscillations. This 
representation of field quantities stands in contrast with the 
standard particle-in-cell (PIC) technique in which the full-time 
variations are followed explicitly.14 In Appendix B (p. 103), a 
derivation of the extended Zakharov model directly from the 
RPIC equations of motion is presented. This derivation provides 
a direct theoretical connection between the kinetic RPIC and 
the fluid-like ZAK models. Furthermore, such a theoretical 
connection provides guidance on how one should proceed with 
quantitative comparison of the two models.

In the RPIC simulations, unique signatures of LDI are found 
that are suggestive of LDI as one of the primary saturation 
processes. Spectral signatures of LDI processes are strikingly 
similar, at least semi-quantitatively, to those found from ZAK 
modeling. In addition, the RPIC model also predicts heated-
electron velocity distributions in the quasi-stationary nonlinear 
regime. Previous RPIC modeling has been extremely successful 
in modeling the nonlinear behavior of parametric instabilities 
involving the Langmuir decay instability, largely because 
RPIC eliminates the often unphysically high electron–ion 
collision rate present in explicit PIC codes, while at the same 
time allowing for the use of a modest number of simulation 
particles per simulation cell. For instance, for a plasma in 
quasi-thermodynamic equilibrium with ,T T 1e i &  RPIC will 
preserve the temperature ratio perfectly over an extended time, 
whereas in standard PIC codes, this ratio will become unity 
prematurely because of the unphysically rapid electron–ion 
energy equilibration rate.15 This is problematic when ion modes 
are involved, such as in LDI, since the IAW damping rate is 
sensitive to this ratio (cf. Ref. 16). Additional effects expected 
from the strong electron–ion collisions (even when Te0 = Ti0) 
include unphysically large collisional damping of LW’s and 
IAW’s. Elimination of unphysical electron–ion collisions makes 
it possible for RPIC simulations to operate with fewer particles 
per simulation cell than standard PIC codes. It is important to 
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observe that the earliest application of PIC codes to TPD by 
Langdon et al.5 and more recently by Yan et al.14 observed a 
high level of ion-density fluctuations. It is not clear in retrospect 
that these can be interpreted as resulting from IAW fluctuations 
excited by LDI as found in this work.

In previous work using ZAK modeling9 it was found, among 
other things, that LDI produces a distinct, rich Fourier spec-
trum of electron- and ion-density fluctuations. Furthermore, 
this modeling provided an explanation for the well-known 
problem that the primary, i.e., most linearly unstable, TPD 
Langmuir waves cannot couple locally to the (observed) radia-
tion at ,3 20~  where ~0 is the laser frequency. In Russell et 
al.,17 it was shown that there is an efficient local coupling of 
the secondary LDI-produced LW’s to the 3 20~  emission and 
this coupling in turn produced, in an inhomogeneous plasma, 
a distinctive double-peaked 3 20~  frequency spectrum. RPIC 
has the advantage that the envelope fields can be used directly 
to compute the currents for the 3 20~  radiation, as was done 
in Russell et al.17 and also more recently for the 20~  radiation 
current as shown in DuBois et al.18 The latter application of 
RPIC to 20~  radiation is proposed for future work.

The article is organized as follows: (1) The equations for the 
physical model underlying RPIC are discussed. This involves 
expressing the electromagnetic vector potential, the longi-
tudinal scalar potential, and the plasma density in temporal 
envelope representations (the primary objective of the RPIC 
formulation is to eliminate the laser time scale from the elec-
tron equation of motion and the laser and LW time scales from 
the ion equation of motion). (2) A sketch of the derivation of 
the RPIC model for TPD is given, with the details provided in 
Appendix A, p. 101. An important element in this derivation 
(as in previous implementations of RPIC15) is the closure of 
the model set of equations with an auxiliary electron equation 
of state. (3) Results of both RPIC and ZAK simulations of 
TPD in a homogeneous plasma are presented (including the 
standard problem of a single coherent laser beam) along with 
simulations of oblique overlapped beams propagating at angles 
of !23° relative to the x axis common in OMEGA geometry.1 
Finally, a summary and conclusions are presented.

Physical Model
The vector potential, scalar potential, and electron density 

are written as19

 ( , ) ,expt i tA x a
2
1 c.c.0 0- ~= +_ i8 B  (1)

 ( , ) ,expt tix
2
1 c.c.S F LW-z z z ~= + +_ i8 B  (2)

 ( , ) ,expn t n n tix
2
1 c.c.S F LW- ~= + +_ i8 B  (3)

where ~0 is the laser frequency and ~LW is the carrier fre-
quency of the LW density and electric-field perturbations. In 
the RPIC model, ~LW is an input parameter and is typically 
chosen to be ~LW = ~pe0 (where e n m42 2

0pe0 e e~ r= ), e is the 
unsigned electronic charge, ne0 is the electron number density, 
and me is the mass of an electron. The subscripts S and F refer 
to the slow (ion-acoustic wave and profile modification) and fast 
(Langmuir wave) time scales, respectively. It is assumed that 
the density is at, or near, quarter-critical density so that ~0 . 
2~LW. The model is also restricted to two spatial dimensions 
(x,y), with z the ignorable coordinate. 

The goal of the RPIC formulation is to eliminate the laser 
time scale from the electron equations of motion and the 
laser and Langmuir wave time scales from the ion equations 
of motion. The particle velocities and positions in RPIC, by 
necessity, are measured in an oscillating and, therefore, non-
inertial frame.

1. Single-Particle Equation in an Oscillating Frame
The nonrelativistic equation of motion for the single-particle 

velocity ( , ) ( , )u x y u x yu x yx y= +t t8 B is given by
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Note that the operators d and d/dt in the above equation are 
measured in the laboratory frame. The above equation can be 
written in the oscillating frame , ,txu u^ h  which moves with veloc-
ity –qA/mc relative to the lab frame (x,t) by using the following 
coordinate transformation:

 
( , )

,mc
q t

u u
A x

-= u  (6)

 ( ), ,mc
q

x x A x d
t

- x x x=
0

u 7 A#  (7)

 .t t= u  (8)

The various partial derivatives required for the transformation 
( , ) ( , )x xt t" u u  are
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By using the chain rule and the partial derivatives shown above, 
one obtains
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The transformation from (x,t) to ( , )txu u  proceeds as
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Equation (5) can now be rewritten as
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 ,
t
x u
d
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u
u
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where the vector identity

 u A u A A u A u u A: : :# # # #d d d d d= + + +u u u u u u u u u u^ h  

has been used. Note that Eqs. (16) and (17), which are valid for 
both electrons and ions, are exact. 

2. Fluid Equations
The electron fluid momentum equation is obtained by inte-

grating Eq. (16) (the single-particle equation of motion) over the 
distribution function, writing explicitly t2d ,t Ud :d/ +2u u u u
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where n, ,Uu  and p are the electron density, fluid velocity, and 
fluid pressure in the oscillating frame. For an isotropic back-
ground electron-velocity distribution f,
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In the special case of an isotropic Maxwellian distribution 
function, p = neTe.

The RPIC Model
The derivation of the RPIC model for TPD can be divided 

into three separate tasks: First, the fluid momentum equation 
[Eq. (18)] is averaged over the fast laser time scale to derive an 
electron equation of state, which itself provides closure for the 
RPIC model. Second, Eq. (18) is also used to derive the trans-
verse electron current, which provides the driving sources in 
the nonlinear Schrödinger equation for the incident EM waves. 
Third, the single-particle equation [Eq. (16)] is averaged over 
the fast laser time scale to derive a reduced-description, single-
particle equation of motion (only a summary of the RPIC model 
is given below; detailed derivations of these equations can be 
found in Appendix A, p. 101). 

The electrons are advanced using the following reduced-
description equations of motion:
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and the ions by 
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Here, Zi and mi are the ion charge state and ion mass, respec-
tively. The electron and ion charge densities are interpolated 
from the particle data onto the computational mesh:

 , ,en t q S tx x xp pe
p e

- -=
!

u u u u u^ ]h g8 B/  (22)

 , .eZ n t q S tx x xp pi i
p i

-=
!

u u u u u^ ]h g8 B/  (23)

The particle shape function S(x) is the bi-quadratic B-spline of 
compact supports Dx and Dy (Dx and Dy are the discrete grid 
spacings of the computational mesh).15 The symbols Rpde and 
Rpdi denote summations over the finite-size electron particles 
and finite-size ion particles, respectively. The electrostatic 
potentials z, zS, and zF are obtained by solving the Poisson 
equation in conjunction with the auxiliary electron equation 
of state:
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Here, a is the constant of integration chosen to satisfy global 
charge conservation and c is the ratio of specific heats (isother-
mal electrons: c = 1; adiabatic electrons: c = 5/3), and ne0 is 
the background electron number density. Finally, the incident 
EM field is advanced self-consistently in time by solving the 
nonlinear Schrödinger equation
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where
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0 0:d d| = -  (32)
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The projection operator in Eq. (32) ensures that the gauge 
condition d • a0 = 0 is preserved.

Equations (19)–(33) are solved self-consistently on a rectan-
gular simulation domain with 0 # x # xmax and 0 # y # ymax, 
consisting of Nx # Ny computational cells of equal size. The EM 
wave of the laser is permitted to propagate along an arbitrary 
direction in the x–y plane and is linearly polarized (normal to 
the direction of wave propagation). The field boundary condi-
tions are periodic in the y direction but are aperiodic in the 
x direction with z(x = 0,y) = z(x = xmax,y) = 0. At all boundary 

surfaces, i.e., x = 0, x = xmax, y = 0, and y = ymax, particles leav-
ing the domain are absorbed (removed), and new particles are 
injected consistent with a Maxwellian bath (with a temperature 
given by the plasma’s initial state) surrounding the simulation 
domain (see Fig. 122.25). Modification of the particle bound-
ary conditions (for example, to account for recirculation of 
hot electrons20) is an important problem for future research, 
as discussed in Summary and Conclusions (p. 101). Finally, 
the RPIC code is fully parallel, based on the Message Passing 
Interface (MPI),15 and has a number of built-in spectral, hot-
electron, and spatial diagnostics.

TC8757JR

Laser

Hot particles exiting

Hot particles
exiting

Thermal particles
returning

iThermal
particles
returning

y = ymax

x = xmaxy = 0
x = 0

Figure 122.25
The two-dimensional simulation geometry. A Maxwellian bath of electrons 
at temperature Te0 is assumed to surround the rectangular simulation domain. 
The laser light can be specified as multiple plane-wave sources, propagating 
at arbitrary angles i to the x direction.

Simulation Results
Three sets of simulations are presented in this section. For 

each set, two simulations were performed with identical param-
eters on the domain xmax = 20 nm, ymax = 10 nm, and con-
sisting of Nx # Ny = 2048 # 1024 computational cells of equal 
size (see Fig. 122.25). In all cases the incident laser light had a 
vacuum wavelength of m0 = 0.351 nm and the plasma was fully 
ionized hydrogen (Z = 1). The two simulations highlight the 
qualitative similarities and quantitative differences between the 
kinetic RPIC model [Eqs. (19)–(33)] and its (fluid) limiting form 
that has been derived in Appendix B [Eqs. (B40)–(B41)]. The 
limiting form, given by Eqs. (B40)–(B41), is solved using the 
existing extended-Zakharov code “ZAK,” which is described 
in DuBois et al.9 The equations solved by ZAK are advanced 
in time using split steps: spatial gradients are computed in 
configuration space, and Landau damping of LW’s and IAW’s, 
which are k dependent, are computed in Fourier space. These 
results, which are by no means exhaustive, are presented to 
illustrate the utility and capability of the RPIC code and to 
motivate further studies.
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The first simulation set investigated the decay of a 
single-plane electromagnetic (EM) wave propagating in the 
positive x direction. Pump depletion was not considered, 
i.e., ,expa ik xa y0 00 0= t _ i  where a00 is a constant [Eq. (31) 
is not solved]. The pump laser had an intensity of I0 = 2 # 
1015 W/cm2, corresponding to a linear (amplitude) growth 
rate of . ,6 4 100

3
TPD pe #-c ~ -  which is 50# above the col-

lisional threshold (the collision frequency ve0 pe0~  was taken 
to be +9.1 # 10–4). The plasma was of uniform initial density 

.n n 0 23e0 c =  [where n m e40
2 2

c e~ r= _ i is the critical den-
sity] and the electron- and ion-plasma temperatures were Te0 = 
4 keV and Ti0 = 2 keV, respectively. This electron temperature 
was about a factor of 2 higher than typically found in OMEGA 
experiments and was chosen because the spectral components 
(e.g., due to LDI) were more widely separated because of the 
large value of kmDe, where De the pe0v/m ~  is the electron 
Debye length and T mvthe e0 e/ /1 2` j  is the electron thermal 
speed. The electrons and ions were each represented by 
16 particles per computational cell. The discrete time step was 
~pe0Dt = 0.1 or, alternatively, Dt . 3.88 # 10–5 ps.

Figure 122.26 shows, from strictly linear-fluid consider-
ations, the locations of frequency- and wave-number–matched 
LW’s (circle), 

 ,k k k
2
1

x y0

2 2 2
De De De-m m m l+ =c `m j  (34)

and the locations of maximum TPD growth (hyperbola),

 .k k k k
2
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2
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2 2
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De De De De- -m m m m=c ` cm j m  (35)

Here l is defined as
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2
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2
1

3
2 2with0

2 0
De

pe0
- -/ /l m ~

~
X Xc fm p  (36)

and e ck c n n10 0 0-~=  is the laser light’s wave number in 
the plasma. The intersections of the circle and the hyperbola 
are locations where TPD-produced LW’s are expected to be the 
most intense. In Fig. 122.26, the two linear modes indicated by 
the label “1” and located at 

 , 0.20, 0.087k k kx yDe De De !/m m m =` ^j h9 C  
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Figure 122.26
The expected wave numbers for plasmons occurring in the TPD instability 
of a single pump laser propagating in the x direction with parameters Te0 = 
4 keV and . .n n 0 23e c =  The circle represents all possible wave-number- and 
frequency-matched decay LW’s [Eq. (34)], and the hyperbola represents the 
locations in k space where the TPD growth rate is maximized [Eq. (35)]. The 
intersections of the circle and the hyperbolae are the spectral locations where 
TPD LW’s are expected to occur. Labels 1 and 2 denote the forward propagat-
ing (blue-shifted) and backward propagating (red-shifted) LW’s, respectively.

correspond to forward-propagating, blue-shifted LW’s and the 
two modes labeled “2” at kmDe = (–0.038, !0.087) correspond 
to backward-propagating, red-shifted plasmons.

Figure 122.27 shows the normalized LW spectra
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time-averaged over the full 20-ps duration of the simulation, 
for both the (a) RPIC and (b) ZAK models. The RPIC and 
ZAK results are displayed on the same color scale to facilitate 
a direct comparison. The RPIC and ZAK results exhibit good 
qualitative similarity, with the dominant spectral features fall-
ing at exactly the same location in k space. The labels 1 and 2 
in Fig. 122.27 refer to the same unstable modes as were identi-
fied previously in Fig. 122.26. In addition, two LDI steps of 
the blue-shifted plasmons are seen in the RPIC calculations 
[labeled 1l and 1'', respectively, in Fig. 122.27(a)], while only 
one LDI step is clearly seen in the ZAK calculations [labeled 1l 
in Fig. 122.27(b)]. As a measure of the level of laser-induced LW 
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Figure 122.27
The time-averaged LW spectral intensity Wk is shown for both (a) RPIC and (b) ZAK simulations for a single plane-wave pump light wave and the parameters 
Te0 = 4 keV and . .n n 0 230e c =  Labels 1 and 2 denote the forward-propagating (blue-shifted) and backward-propagating (red-shifted) TPD LW’s, respectively. 
Label 1l indicates that the LW’s wave corresponding to the first LDI step of blue TPD plasmon (1), which is evident in both the RPIC and ZAK calculations. 
The second decay step (1ll) can be seen in (a).

excitation, the integrated value W / # dkWk is defined, where 
the integration is carried out over the disk ukmDeu # 0.25. For 
the RPIC simulation W = 1.0 # 10–1, while the ZAK simulation 

Figure 122.28
The time-averaged IAW density fluctuation spectrum udNku2 is shown for (a) RPIC and (b) ZAK simulations of TPD driven by a single plane-wave pump 
with the parameters Te0 = 4 keV and . .n n 0 230e c =  IAW’s corresponding to the first LDI step of the blue TPD plasmon are evident in both sets of simulations, 
although narrower and weaker in (a) than in (b), and are indicated by the label IAW'.
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gives the almost 2# stronger value of W = 1.8 # 10–1. However, 
the peak values in the RPIC simulation are narrower and more 
intense than for the ZAK case.
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The corresponding IAW spectra

 ,N
x y

n k k n
2 2 0
max max

k S x y
2 2

e e/d
r r

d ` j  

are shown in Fig. 122.28. Ion-acoustic waves caused by LDI are 
clearly visible in both the RPIC and ZAK simulations and are 
labeled IAWl. The IAW from the second LDI step is very weak 
and difficult to identify in the displayed spectrum. The inte-
grated LDI density perturbations are estimated by the quantity 

dN .Nk k
2

LDI / d#  In this case, the domain of integration 
is the annulus k. . .0 3 0 5De# #m  The choice of domain is 
intended to avoid including the structures in udNku2 found 
near kx = 0 that arise from the beating of pairs of LW’s with 
equal and opposite values of ky and equal values of kx. Using 
this criterion, RPIC gives NLDI = 1.4 # 10–4, whereas ZAK 
gives NLDI = 5.3 # 10–4. If it is assumed that the ponderomo-
tive drive for the IAW’s is proportional to W, comparing the 
NLDI values would indicate that LDI plays a relatively smaller 
role in the nonlinear saturation in RPIC. Kinetic saturation 
mechanisms, such as trapping of electrons (and ions) in the 
LW’s (and IAW’s) in the case of RPIC, cannot be ruled out. All 
of the simulations reported here reach saturation after about 
15 ps, which is also the time at which LDI features become 
well established in the spectra.

In the second simulation set, two overlapping incident laser 
beams, again plane waves, were prescribed at angles i relative 
to the x axis of i! = !23°. This type of crossed-beam geometry 
is generic to direct-drive ICF, where large numbers of beams 
are overlapped to provide uniform illumination of the target 
(the precise angles of i! = !23° are specific to OMEGA1). The 
individual beam intensity I0 = 1 # 1015 W/cm2 was chosen such 
that the crossed-beam overlapped intensity was the same as the 
previous single-beam case, shown in Figs. 122.26–122.28, and 
all other parameters were identical, with the exception of the 
plasma density, which was slightly increased to .n n 0 2310e c =  
(the reason for choosing this particular density is given below).

The locations of the most linearly unstable TPD-produced 
LW waves, for an arbitrary irradiation angle in a homogeneous 
plasma, can be obtained simply by rotating Eqs. (34) and (35) in 
k space (see Appendix C, p. 109). In general, for two overlap-
ping beams there are eight distinct LW’s since each beam will 
produce four LW’s (as previously shown in Fig. 122.26): two 
corresponding to the forward (blue-shifted) plasmons and two 
corresponding to the backward (red-shifted) plasmons. In the 
case of beams symmetrically oriented about the x axis, for a 

given set of plasma parameters . . ,T n n0 2 0 25and 0e0 e cK K` j  
a particular beam angle i exists in which two of the forward 
(blue-shifted) plasmons are degenerate, or common. This 
overlap, or sharing of a common plasmon, allows for the 
cooperative nonlinear interaction between the two crossed 
beams. Conversely, for a prescribed beam angle i and electron 
temperature Te0, a particular density n n0e c exists that will 
result in degenerate forward plasmons. In monotonic inhomo-
geneous plasmas, a location will always exist along the beam 
path where this degeneracy condition is satisfied, but in homo-
geneous simulations it must be specially selected, which is the 
choice made here. The relationship between the beam angle 
i, electron density ,n n0e c  and electron temperature Te0 for 
degeneracy to occur is derived in Appendix C and is given by 
Eq. (C8). For an electron temperature Te0 = 4 keV and angles 
i! = !23°, Eq. (C8) yields degenerate forward plasmons for an 
electron density of . .n n 0 2310e c =  This is depicted graphically 
in Fig. 122.29, where two sets of circles and hyperbolae are 
shown: (1) solid lines for the laser propagating at i+(= +23°) 
and (2) dashed lines for the laser propagating at i–(= –23°). 
As before, the intersections of the circle and the hyperbola for 
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Figure 122.29
Expected wave numbers for TPD LW’s resulting from the decay of two EM 
plane waves propagating with angles i = !23° with respect to the x axis (the 
parameters are Te = 4 keV and .n n 0 231e c = ). Points 1+ (1–) and 2+ (2–) 
denote the expected locations of the red- and blue-shifted plasmons from 
the EM wave propagating with angle i = +23° (–23°), respectively. The solid 
(dashed) circle [Eq. (C1)] represents all frequency- and wave-number–matched 
LW’s for the i = +23° (–23°) beam. Likewise, the solid (dashed) hyperbolae 
[Eq. (C4)] show the maximum growth rate for the i = +23° (–23°) beam. The 
blue-shifted plasmons 1+ and 1– are degenerate.
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Figure 122.30
The time-averaged LW spectrum Wk is shown for both (a) RPIC and (b) ZAK 
simulations for the parameters Te = 4 keV and . .n n 0 231e c =  The pump 
consists of two identical EM plane waves, of intensity I0 = 1 # 1015 W/cm2, 
propagating obliquely at i = !23° with respect to the x axis. Locations 1+ (1–) 
and 2+ (2–) denote the blue- and red-shifted LW’s produced by the pump laser 
with angle i = +23° (–23°), respectively. The forward-going, blue-shifted LW’s 
from each beam that are on-axis (ky = 0) are degenerate. The waves marked 
1l and 1ll are identified as the LW’s produced by the first and second LDI steps 
of the degenerate LW, respectively.

Figure 122.31
The time-averaged IAW spectrum udNku2 is shown for (a) RPIC and (b) ZAK 
simulations with the parameters Te = 4 keV and . .n n 0 231e c =  The pump 
consists of two EM plane waves, of intensity I0 = 1 # 1015 W/cm2, propagat-
ing obliquely with angle i = !23° with respect to the x axis. The features 
labeled IAWl and IAWll are IAW’s generated by the first and second decay 
steps of the LDI of the common (degenerate) TPD LW. The feature indicated 
by the label p, with kxmDe = 0, is the density response to the ponderomotive 
force generated by the beating of the two incident plane waves at kymDe = 
!2k0mDe sin(23°) + !0.123.

each respective laser beam are the spectral locations where 
LW’s are expected to be observed. These are labeled as in 
Fig. 122.26, with the superscripts ! corresponding to decays of 
the beam incident at angle i!. The on-axis, blue-shifted LW’s 
of both beams (1+ and 1–) are degenerate—the common LW 
wave. This has a wave number kmDe . (0.23,0.0) and a phase 
velocity . .4 7v vthe.z  This notion of a “shared” plasma wave, 

which can generally occur in cases of multiple-beam irradiation 
where a symmetry exists, has been discussed by Short et al.21 

Figures 122.30 and 122.31 show the LW spectral intensity 
Wk and IAW density spectra udNku2, respectively, time averaged 
over the full 20-ps duration of the simulation. Although the 
RPIC and ZAK results are not in exact quantitative agreement, 
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their fluctuation spectra have strikingly similar features. The 
dominant spectral features occur at precisely the same locations 
in k space. In Figs. 122.30(a) and 122.30(b), all eight of the 
single-beam decays (1!, 2!) can be seen, with the strongest 
spectral feature that of the degenerate, blue-shifted LW (1+,1–). 
In addition, two LDI decay steps of the forward-TPD–produced 
LW’s can be seen in both the RPIC and the ZAK calculations 
[indicated by the labels 1l at k1lmDe . (–0.20,0.0) and 1ll at 
k1llmDe . (0.16,0.0) (Ref. 22)]. For the RPIC simulation, the 
LW excitation was computed to be W = 2.7 # 10–2, while the 
ZAK simulation has a significantly stronger level of LW’s, W = 
2.8# 10–1. Figure 122.31 shows the IAW’s associated with these 
two LDI decay steps, kIAWlmDe . (0.43,0) and kIAWllmDe . 
(0.39,0) (Ref. 22), although the IAW from the second decay is 
relatively weak and not distinctly evident in the ZAK calcula-
tions [Fig. 122. 31(b)]. As a measure of the strength of the LDI 
process, RPIC gives NLDI = 6.4 # 10–5, whereas ZAK gives 
NLDI = 3.7 # 10–4. Again these comparisons of the NLDI val-
ues would indicate that LDI plays a relatively smaller role in 
the nonlinear saturation in RPIC compared to its role in ZAK. 
Another feature (p) evident in Fig. 122.31, although unrelated 
to LDI, are fluctuations at kmDe . (0.0, !0.123) caused by 
the ponderomotive force that results from the beating of the 
two incident light waves in the transverse direction at kymDe = 
!2k0mDe sin(23°). Other features near kx = 0 are caused by the 
beating of LW’s with equal values of kx and equal and opposite 
values of ky.

The electron distribution computed from discrete simula-
tion particles provides information regarding suprathermal 
electron generation. The energetic electron tails are often noisy, 
however, because of insufficient particle numbers. To improve 
the statistics, the electron distribution was time averaged over 
20 ps. To provide information regarding the directionality of 
energetic electron generation, the (time-averaged) 2-D electron 
distribution function f(vx,vy) was collapsed to 1-D as follows: 
First, the 2-D distribution f l was computed in a rotated (primed) 
velocity frame, where the vlx direction is parallel to the desired 
probe angle iprobe:

 

fv v v v

v v
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The distribution f l was then integrated in the perpendicular 
vly direction, within the limits !2vthe, to yield a 1-D veloc-
ity distribution,

 v v v v, .f f d
v

v
x x y y1 2

2

D
the

the
/

-- l l l l l_ `i j#  

Typically, the angle iprobe is chosen so that the vlx axis aligns 
with the direction of the LW propagation. With this choice of 
iprobe, f1-D(vlx) yields a 1-D velocity distribution, and therefore 
a hot electron temperature, in the direction of LW propagation.

The time-averaged 1-D electron-distribution function 
f1-D along the common wave direction [iprobe = 0, shown in 
Fig. 122. 32(a)] indicates a hot-electron temperature of approxi-
mately 3# the initial background electron temperature Thot + 
3Te0, where Te0 = 4 keV. Although the electrons have departed 
from their initial Maxwellian state, the hot-electron tempera-
ture is modest. Since our electron distribution was averaged 
over 20 ps and the simulation required 15 ps to reach satura-
tion, it is possible that if the simulation were continued longer 
in time, the electron distribution would continue to evolve 
toward higher hot-electron temperatures. An often-used simple 
estimate of hot-electron temperature, based on a single-plane 
LW, is e v vT T 222

0 the+ =z` j  (Ref. 23). This estimate is in 
excess of our observed hot-electron temperature by a factor of 
about 7.4, although v v 222 2

the =z  is exactly the place where 
the distribution function begins to deviate from a Maxwellian 
[indicated by the arrows in Fig. 122. 32]. The probe direction 
iprobe = 180° [see Fig. 122. 32(b)] gives a measure of hot-elec-
tron generation by the LDI-produced LW, with .T T 3hot e0+  
Hot-electron temperatures along the other principal directions 
of iprobe = !23° (directions of the non-degenerate forward blue-
shifted plasmons; results not shown) also indicate .T T 3hot e0+  
In this particular case, the hot-electron temperature does not 
appear to be significantly directional.

One observation to be drawn from the single-beam and 
overlapping-beam simulations shown above is that while the 
single-beam and the overlapped intensities are identical (RI0 = 
2 # 1015 W/cm2), the peak value of the LW spectrum for the 
overlapping-beams case (Fig. 122.30) is greater than that for 
the single-beam case (Fig. 122.27), while for the RPIC runs, 
the integrated spectrum is actually weaker: W = 1.0 # 10–1 for 
the single-beam case (Figs. 122.26–122.28) while W = 2.7 # 
10–2 for the overlapping-beam case (Figs. 122.29–122.32). This 
is understandable if one considers the single-beam case with 
I0 = 2 # 1015 W/cm2 (Figs. 122.26–122.28) as two perfectly 
coincident beams, each with an intensity of 1 # 1015 W/cm2. 
Consequently, each one of the four TPD-produced LW’s has 
a corresponding overlapped LW. In the case of two beams 
propagating at angles i = !23° (Figs. 122.29–122.32), only one 
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TPD-produced LW has a corresponding overlapped LW (loca-
tion 1! shown in Fig. 122.29). The fact that the peak intensity 
is higher is evidence that overlapping LW’s enhance the TPD 
instability by allowing for nonlinear interaction between the 
crossing laser beams.

In the final simulation set, the electron temperature was 
reduced to Te0 = 2 keV, which is typical of current OMEGA 
implosion experiments.1 For this electron temperature and 
beam angle i! = !23°, Eq. (C8) gives an electron density 

. ,n n 0 2410e c =  at which the simulations were performed. This 
was done to involve the shared plasma wave since it is believed 
to be important experimentally.1 The laser geometry and inten-
sity (I0 = 1 # 1015 W/cm2 for each beam) are identical to those 
corresponding to the previous case in Figs. 122.29–122.32. 
The individual beam intensity of 1 # 1015 W/cm2 corresponds 
to a linear (amplitude) growth rate . ,4 3 10 3

TPD pe0 #-c ~ -  
which is 83# above the single-beam collisional threshold (the 
collisional frequency ve0 pe0~  is taken to be +4.7 # 10–4). This 
final case is therefore more strongly driven than the second 
case, which was 50# the collisional threshold. The linear TPD 
wave geometry is illustrated in Fig. 122.33, the labels having 
the same meaning as in previous figures. The common LW 
now occurs at kmDe . (0.16,0.0) and corresponds to a phase 
velocity . .6 5v vthe.z  
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Figure 122.32
The 1-D time-averaged electron distribution shown along two directions 
(i = 0°,180°) for two obliquely incident EM plane waves (at angles !23° with 
respect to the x axis) with individual intensities of I0 = 1 # 1015 W/cm2 and 
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the LDI LW direction of the common wave. The arrows indicate the value of 
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the corresponding to the phase velocity of the common wave.
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Decay diagram for the TPD instability of two EM plane-wave pump beams 
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to the individual decays of the beam with incident angle of i = +23° (–23°). 
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rate) [Eqs. (C1)–(C4)] that are labeled 1 and 2 give the expected location of 
the blue- and red-shifted TPD LW’s, respectively. The on-axis (kymDe = 0) 
blue-shifted LW’s are degenerate.
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Figure 122.35
The time-averaged IAW spectrum udNku2 is shown for (a) RPIC and (b) ZAK simulations for the case with parameters Te = 2 keV and . .n n 0 241e c =  The 
pump consists of two plane EM waves propagating with angles i = !23° with respect to the x axis, each with an intensity of I0 = 1 # 1015 W/cm2. The features 
labeled IAWl and IAWll are IAW’s generated by the first and second decay steps of the LDI of the common (degenerate) TPD LW. The second step is seen only 
in the RPIC calculation (a). The feature indicated by the label p, with kxmDe = 0, is the density response to the ponderomotive force generated by the beating 
of the two incident plane waves at kymDe = !2k0mDe sin(23°) + !0.09.

Figure 122.34
The time-averaged LW spectrum Wk is shown for (a) RPIC and (b) ZAK simulations for the parameters Te = 2 keV and . .n n 0 241e c =  The pump consists of 
two plane EM waves propagating at angles i = !23° with respect to the x axis. Each pump laser beam has an intensity of I0 = 1 # 1015 W/cm2. The labels 1+ (1–) 
identify the forward-propagating, blue-shifted LW’s resulting from the primary decay of the beam with angle i = +23° (–23°), while the labels 2+ (2–) mark the 
corresponding backward-propagating, red-shifted LW’s. The degenerate LW is seen to dominate both the (a) RPIC and (b) ZAK spectra. The features marked 
1l and 1ll are identified as the first and second decay steps of the LDI of the shared LW. The second step is not seen in the ZAK calculations (b).

Figures 122.34 and 122.35 show the normalized LW spectral 
intensity Wk and the IAW density spectra udNku2, respectively, 
time averaged over 20 ps. The RPIC and ZAK results bear 

similar qualitative behavior to the Te = 4 keV case when the 
reduction of kmDe is taken into account. Both the LW and IAW 
spectral features in the RPIC simulations are significantly nar-
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rower and weaker than those of the ZAK simulations (RPIC: 
W = 4.5 # 10–2, ZAK: W = 8.6 # 10–2; for the LDI process, 
RPIC: N = 1.9 # 10–4, ZAK: NLDI = 4.3 # 10–4). The RPIC 
LW spectrum [Fig. 122.34(a)] contains evidence of two LDI 
decay steps of the common LW: the primary LDI step, marked 
with the label 1l, at k1lmDe . (–0.13,0.0) and a second LDI step, 
marked 1ll at k1llmDe . (0.09,0.0) (Ref. 22). The RPIC IAW 
spectrum [Fig. 122.35(a)] also shows the IAW’s correspond-
ing to these two LDI decay steps [kIAWlmDe . (0.29,0.0) and 
[kIAWllmDe . (0.25,0.0) (Ref. 22)], although the IAW from the 
second decay is relatively weak. Only one LDI step is clearly 
evident in the ZAK calculations [Figs. 122.34(b) and 122.35(b)]. 
The distinctive fluctuations in the IAW spectrum udNku2 at 
kmDe . (0.0, !0.09) are again due to ponderomotive force 
generated by the beating of the two obliquely propagating inci-
dent light waves. Although not shown, the difference between 
the two calculations can be reduced by comparing the ZAK 
spectra with those of RPIC carried out at a higher intensity. 
Results (not shown) indicate that the LW and IAW spectra in 
RPIC simulations broaden significantly. This observation is 
consistent with past experience.11,24

The time-averaged (over 20 ps), 1-D electron-distribution 
function along the common-wave direction (iprobe = 0), shown 
in Fig. 122.36(a), gives .T T 140hot e +  Again, the simple esti-
mate of hot-electron temperature is e v vT T 420

2
hot the+ =z` j  

(Ref. 23). This estimate is in excess of the observed hot-
electron temperature by a factor of +3. The simple estimate 

e v v ,T T 0
2

hot the= z` j  based on a single-plane LW, is not 
accurate here because the LW spectrum contains a broad and 
complex spectrum of waves. The phase velocity of the common 
wave is, however, close to the position where the distribution 
function first begins to deviate from the initial Maxwellian 
(shown by the arrows in Fig. 122.36). The hot-electron tem-
perature in the LDI direction of the common LW wave (iprobe = 
180°), shown in Fig. 122.36(b), is cooler with T T 100hot e +  
most likely because the LDI-produced LW’s are not as strong 
as the primary LW. The phase velocities of the primary and 
LDI LW’s differ only slightly. The hot-electron temperatures 
along the other principal directions iprobe = !23° (results not 
shown) were also determined to be 10.T T 0hot e +  The hot-
electron temperatures for the Te0 = 2 keV case are significantly 
higher than that for the Te0 = 4 keV case. The intensities of the 
degenerate LW’s for the two temperature cases do not differ 
significantly. The TPD-produced LW’s for an electron tempera-
ture of Te0 = 2 keV occur at lower values of kmDe and therefore 
have greater phase velocities since 

 v v .k k1 3 2 2
the De Dem m= +z _ _ _i i i9 C  

Waves with greater phase velocity may lead to higher hot-
electron temperatures, even though Thot is not seen to scale as 
strongly as ,v v 2

thez` j  as might be suggested by the simple, 
single-plane-LW estimate.
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Figure 122.36
The 1-D, time-averaged electron distribution shown along two directions 
[i = 0° (top panel) and i = 180° (bottom panel)] for the case of two EM plane 
waves, each of intensity I0 = 1 # 1015 W/cm2, that are incident at angles of 
i = !23° on a plasma with Te = 2 keV and . .n n 0 241e c =  The temperature in 
the direction ,T T0 140hot ei = =` j  as determined by the fit shown by the red 
dashed curves, is greater than that in the direction .T T180 100hot eci = =` j
The arrows indicate the value of v v2 2

the corresponding to the phase velocity 
of the common LW.
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Summary and Conclusions
The purpose of this article has been to present the RPIC 

model for TPD and to establish it as a useful and reliable model 
for simulating the nonlinear development of TPD. The simu-
lations were performed in homogeneous plasmas to facilitate 
comparisons with linear theory. Given the encouraging results 
in homogeneous plasma, the next step in the development of the 
RPIC TPD model will be to introduce experimentally relevant 
density gradients and flow velocities.

The RPIC model and the Zakharov limit were compared for 
three separate cases. In all three cases, shown in Simulation 
Results (p. 92), the level of LW turbulence excited by TPD was 
lower in RPIC than in ZAK, although both models displayed 
qualitatively similar k-space fluctuation spectra. Therefore, 
kinetic effects—primarily hot-electron generation—are likely 
a competing saturation mechanism together with LDI. This is 
consistent with the results of several previous works.11,24 Fur-
ther research is required to determine the relative importance of 
LDI and hot-electron generation when they act simultaneously.

Two of the three cases investigated TPD excited by crossing 
laser beams. These simulations show that at a certain density, 
for a given angle between the beams, the beams can share a 
common primary LW, thereby enhancing the TPD instabil-
ity (in an inhomogeneous plasma such a density can always 
be found, but here it was chosen by design). The saturation 
of the crossed-beam TPD instability by LDI and modifica-
tion of the electron-distribution function is also apparent. 
The heated-electron–distribution function was observed to 
deviate from the initial Maxwellian at a velocity correspond-
ing to the phase velocity of the common LW. Crossed-beam 
irradiation also introduced a nonzero ponderomotive force in 
the electron equation of motion from the transverse electric 
field. The effects of this term were observed in the perturbed 
density spectra. A strong feature in the low-frequency density 
fluctuation spectrum also resulted from the ponderomotive 
beating of two LW’s sharing the same parallel wave number 
(with respect to the laser direction) but with equal and opposite 
perpendicular wave numbers.14 This feature was also evident 
in our previous ZAK simulations but never noted, which would 
imply that density channels are produced parallel to the laser 
direction. Whether this survives in an inhomogeneous plasma 
remains to be studied.

The semi-quantitative agreement of RPIC modeling and 
ZAK modeling, for the few survey cases presented here, 
highlights the similarities and differences between the kinetic 
RPIC model and its limiting (fluid) form. In this way, the RPIC 

modeling provides a bridge to systematically improve upon 
ZAK modeling. This is desirable because fluid-type codes are 
much more efficient than PIC codes and can therefore include 
more of the essential experimental realities (e.g., three spatial 
dimensions and speckled laser beams). Of particular inter-
est is the possibility, currently under investigation, that the 
discrepancy between the two models might be recoverable by 
including modifications of the electron-distribution function in 
the quasi-linear approximation.11 If possible, this would have 
the benefit of greatly reduced computational expense, allow-
ing for more-realistic simulations to be made, for example, 
in three spatial dimensions. The resulting modified electron 
energy distributions are expected to be strongly dependent on 
the boundary conditions used for electrons entering and leav-
ing the simulation box (this is consistent with conclusions in 
Sanbonmatsu et al.11). Indeed, the present calculations should 
not be regarded as predicting experimental hot-electron spectra 
since it has been argued that the recirculation of hot electrons 
through the TPD-active region must be accounted for by any 
physically realistic model of hot-electron generation in spheri-
cal implosions.20

Finally, the currents generating experimentally observable 
EM signatures of TPD (the secondary radiation emissions at 

20~  and 3 20~ ), which typically involve a tiny fraction of the 
LW and IAW energy, can be calculated by postprocessing the 
high-frequency electric-field envelopes and the low-frequency 
electron-density fluctuations generated in either the RPIC or 
the ZAK modeling. This technique is exactly the same as 
used in Refs. 9 and 17 for the ZAK modeling. This is another 
advantage of the RPIC modeling, which uses the same envelope 
representations as ZAK, over standard PIC methods. With 
this procedure future studies of the correlation of hot-electron 
effects with 20~  radiation may be possible.
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Appendix A: Derivation of the RPIC Equations
In this Appendix, a derivation of the RPIC model is pre-

sented. One notable difference between standard PIC methods 
and RPIC is the explicit removal of the laser time scale from 
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RPIC equations of motion. As a result of removing the laser 
time scale, it is essential that RPIC equations of motion are 
expressed in an oscillating, non-inertial frame. There are three 
major components of the RPIC derivation: the electron equation 
of state (closure for our RPIC model), the nonlinear Schrödinger 
equation (EM propagation and pump depletion model), and the 
reduced-description particle equations of motion.

1. Electron Equation of State
Assume that the velocity ,Uu  electrostatic potential z, and 

pressure p are of the following form:
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Substituting the above expression for Uu  into Eq. (18), keeping 
only terms of frequencies ~ = 0, !~LW, !(~0–~LW), !(~0–
2~LW), the individual terms in Eq. (18) are approximated as 
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where it has been assumed that tU UF FLW2 2 % ~u u  and 
.U US F%  Substituting these approximations in Eqs. (A1)–

(A6) into Eq. (18), neglecting the second-order convective 
term ,U U:du u u  and collecting terms of similar frequencies, 
one obtains
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and
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where D~ / ~0–2~LW. Setting q = –e and m = me, Eq. (A7) is 
solved approximately to give

 ,
im

eU EF
e LW

eff.
~

u  (A9)

where Eeff was previously defined in Eq. (28). Substituting 
Eq.  (A9) into Eq. (A8), neglecting the term in the square 
brackets on the right-hand side (rhs) of Eq. (A8) and inte-
grating the resulting equation, assuming a pressure profile 

,p n T n nS S0 0e0= c` j  with c being the ratio of specific heats 
(isothermal electrons: c = 1; adiabatic electrons: c = 5/3), one 
obtains the electron equation of state, Eq. (26). This provides 
closure for the RPIC model. 
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2. Field Equations
The driving current J resulting from self-consistent electron 

motion is
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The components of J with frequencies !~0 and !2~LW (since 
~0 . 2~LW for TPD) are of importance:
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where UF
u  is given in Eq. (A9). On substituting Eq. (A9) into 

Eq. (A10), an equation for J0 is obtained [Eq. (33)], from which 
the transverse current J0T can be computed:
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A substitution of the above expression for JT into the second-
order wave equation, assuming slowly varying envelopes 
and separating frequency components, results in a nonlinear 
Schrödinger equation for the evolution of the incident EM-wave 
envelope [Eq. (31)].

3. Time-Averaged Single-Particle Equations of Motion
The exact single-particle equation of motion is time aver-

aged to obtain the RPIC single-particle equation of motion. 
Recall that Eq. (16) is exact and is applicable to both electrons 
and ions.

The electron particle velocity can be conveniently cast in 
the form

 e ,exp i tu u u u
2
1 c.c.e F0 eS e LW- ~= + + +u u u u u_ i8 B  (A12)

where u 0eu  is the initial electron velocity, u Seu  the low-frequency 
velocity perturbation, and u Feu  is the high-frequency velocity 
perturbation. Equation (16) is solved approximately as follows: 
First, neglecting contributions from the laser pump and assum-
ing ,tu uS Fe LW e2 2 % ~u u u  Eq. (16) yields

 

,

.

im
e

im
e

u

E

F F

F

e
e LW

e LW

- d.
~

z

~
=

u u

 

Then, substituting the above approximate expression for u Feu  
into Eqs. (A12) and (16) and keeping only electron responses 
at the ion-acoustic and Langmuir time scales, i.e., ~ + 0, 
!~LW, !(~0–~LW), Eq. (19) is obtained, the electron reduced-
description equation of motion in the oscillating frame.

Specifying these results to 2-D, assuming polarization in the 
y direction and a fixed pump wave a0 = a00 exp (ik0x), Eq. (19) 
further reduces to give
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The ion-particle equations of motion follow similarly to yield 
Eq. (21).

Appendix B: Derivation of the Zakharov Equations  
from RPIC

In this Appendix, it will be shown how the Zakharov 
equations may be obtained from the RPIC model under cer-
tain approximations. This connection ensures that the RPIC 

(A10)
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equations have the correct limiting form (since the Zakharov 
equations may also be shown to be a consequence of the  
Vlasov equations on which the RPIC model is based), and 
that the Zakharov and RPIC models predict the same physical 
behavior in the linear regime.

It is noted that while the RPIC equations are more conve-
niently written in the oscillating frame, the Zakharov equations 
are customarily written in the laboratory frame of reference. To 
begin, Eq. (19) is transformed back into the laboratory frame 
of reference:
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since ,d d=u u  ,t t=u  and d ,t td d d=u  as shown previously. 
Here, E is the physical electric field reconstituted from the 
envelope representation
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Using the definition ,e m cu u Ae e e= +u  one obtains from 
Eq. (B1)
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Changing to conventional Zakharov nomenclature, E1 / EF 
and ,i cE a2 0 0/ ~  the above equation becomes
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where D~ was defined previously [see Eq. (30)]. The Vlasov 
equation corresponding to the acceleration A is

 A ,F Fv 0xt v: :2 2 2+ + =_ i  (B8)

where the distribution function F can be written in terms of 
slowly varying envelopes
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 d, ; , ; .f t f f tx v v x vM0 0= +_ _ _i i i  (B10)

Here, fM(v) is the time-stationary, spatially uniform background 
Maxwellian distribution. Substituting Eqs. (B4)–(B7) and 
(B9)–(B10) into Eq. (B8) and separating frequency compo-
nents, one obtains the coupled equations
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where terms that are not linear in E1 or linear in E E*
2 1:  

are neglected since only the linear parametric dispersion is 
of interest.

Fourier transforming Eqs. (B11)–(B13) in space and time, 
one obtains
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where
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Equations (B16)–(B18) can be solved approximately. First, 
retaining only first-order terms in the electric fields E1 and E2, 
Eqs. (B16)–(B18) give
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Substituting the above approximate expressions for df0(k,~,v), 
f1(k,~,v), and f2(k,~,v) into the right-hand side (rhs) of 
Eq. (B17), one obtains
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In order to solve Eq. (B22), E1(k,~) must first be computed. The 
Poisson equation, in conjunction with the continuity equation 
and the gauge condition d • A = 0, gives
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 3 ,fv vd, , ,eJ k k v1 1-~ ~=^ ^h h#  (B24)

where, consistent with the envelope approximation, u~u % ~LW.

Substituting Eq. (B22) into Eq. (B24) leads to
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Note that since E1 is a longitudinal field,
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Equation (B26) is evaluated, using the approximation u~u % 
~LW to give
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To obtain the right-hand side of Eq. (B32), it was assumed that 
u~u, ,LW%~ ~l

 ,ck k k k v k k vs the- - - -:%# +~ ~l l l l] g  

and the relation 

 , , ,n e Tk kS Se e e0-d ~ z ~=^ ^h h  

where , ,iE k k ks Se-~ z ~=^ ^h h was used.

Using the approximations u~–k • vu % ~LW and 

 ,k k v LW- - - : %~ ~ ~l l] g  

neglecting smaller terms of the order ,kk v 1LW De: + %~ m  
and applying two successive integration by parts in velocity 
space, Eq. (B28) is evaluated:
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Similarly, using the same approximations and integration by 
parts, Eq. (B30) is evaluated:

d

d

,

, ,

,

, .

m

e n

m

e n

J k

k E k E k k k

k E k k

E k k

4

4

d

d

*

*

1
2

2 3

3
0

1 2

2 3

3
0

1

2

e LW

e

e LW

e

- - - -

- -

- -

:

:

#

d ~

~
~ ~ ~ ~

~
~ ~

~ ~

=

+

l l l l l l

l l l l

l l

u

u

^

^ ^

^

^

h

h h

h

h

8

9

B

C

##

##

 

(B34)

(B33)



A Reduced PARticle-in-cell Model foR two-PlAsMon-decAy instAbility

LLE Review, Volume 122108

Equation (B34) is recast using the change of variables kll = 
k–kl and ~ll = ~–~l:
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Summing Eqs. (B33) and (B35), rearranging the resulting 
equation, and using the fact that E2

u  is a transverse field, i.e., 
, ,E k k 02 :~ =l l lu ^ h  one obtains 
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Using the approximations ,k 2 2
e LW pe0 LW-.| ~ ~ ~ ~+_ i  

and ~0 + 2~LW, and transforming Eq. (B32) back to configura-
tion space with ik $ d , results in
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Transforming Eq. (B36) back to configuration space, one obtains
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Substituting Eqs. (B25), (B31), (B32), and (B36) into 
Eq. (B23) and transforming back to configuration space with 
ik $ d , one finds
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where the operator F–1 denotes the inverse Fourier transform 
in space and time, and
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In this approximation, Eq. (B39) can then be evaluated explic-
itly to yield the well-known Zakharov equation
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where the operator “%” is used to denote a convolution in con-
figuration space (see DuBois et al.9). The iterative procedure 

(B36)

(B35)
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leading to Eq. (B22) is based on the assumption that the pertur-
bations of the distribution function are small compared to the 
background distribution function fM. This leads to the valid-
ity estimates for the Zakharov model: ,n TE 4 101

2
e e0 %r  

,n TE 4 12
2

e0 e0 %r  ,e T 1Se e0 %z  ,n n 1Se e0 %d  and 
kLWmDe % 1. These involve qualitative arguments, and the 
quantitative strengths of the inequalities are not known a priori. 
Furthermore, this derivation does not account for the evolu-
tion of the background electron-velocity distribution function, 
which is here taken to be a fixed Maxwellian, fM(v). This is 
why detailed quantitative comparison of the ZAK model with 
RPIC is desirable.

The equation for the low-frequency density fluctuation can 
be derived in a similar way. The result is
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In the simulations reported in the text where the laser is a 
uniform plane wave, the ponderomotive pressure of the pump 
[the second term on the right-hand side of Eq. (41)] does 
not contribute.

Appendix C: Degenerate LW’s with Overlapping Beams
In the presence of two identical beams propagating at angles 

i = !ib with respect to the x axis, the locations of the most 
linearly unstable LW are given by algebraic solutions of the 
following two sets of equations:
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where l is defined by
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Equations (C1)–(C4) are obtained by rotating Eqs. (34) and (35) 
through angles !ib. For arbitrary temperature Te0 and density 
ne0, the solutions of Eqs. (C1)–(C2) and (C3)–(C4) result in 
eight distinct modes since each set of circles and hyperbolae 
will have four distinct intersections. There exists, however, a 
combination of temperature and density such that two of the 
eight solutions become degenerate, i.e., there will be only seven 
distinct solutions for (kx1,ky1) and (kx2,ky2). By symmetry, this 
special condition occurs when ky1 = ky2 = 0, in which case 
the location kx = kx1 = kx2 of the degenerate mode is given by
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Equations (C5) and (C6) are augmented by the electromagnetic 
dispersion relation 
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Equations (C5)–(C7) are solved for the background electron 
density given by
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