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In inertial confinement fusion (ICF),1 a shell of cryogenic 
deuterium and tritium (DT) thermonuclear fuel is accelerated 
inward by direct laser irradiation or by the x rays produced 
by heating a high-Z enclosure (hohlraum). At stagnation, the 
compressed fuel is ignited by a central hot spot surrounded 
by a cold, dense shell. Ignition occurs when the alpha-particle 
heating of the hot spot exceeds all the energy losses. To measure 
progress toward ignition, a metric is needed to assess how an 
implosion experiment performs with respect to the ignition 
condition. In a stationary plasma, the ignition condition is given 
by the Lawson criterion.2 In ICF, the same ignition condition 
must be derived in terms of measurable parameters. Different 
forms of the 1-D ignition condition have been derived,1,3,4 but 
none of them can be accurately measured. Measurable param-
eters of the ICF fuel assembly are the areal density, the ion 
temperature, and the neutron yield. This article demonstrates 
that the ICF ignition condition can be written in terms of these 
measurable parameters. We start from the 1-D ignition model 
of Ref. 5 and generalize it to multidimensions through a single 
parameter: the yield-over-clean (YOC). The YOC is the ratio 
of the measured neutron yield to the predicted 1-D yield. The 
latter must be calculated consistently with the measured tR 
and Ti. The generalized ignition criterion depends on the areal 
density, the ion temperature, and the YOC. Alternatively, the 
ignition condition can be written in terms of the areal density, 
the neutron yield, and the target mass. 

This article first deals with the 3-D extension of the dynamic 
ignition model5,6 and an analytic ignition condition. The results 
of hydrodynamic simulations of imploding capsules forming 
the database used to generate a more-accurate ignition condi-
tion will also be shown. A measurable criterion requires the 
solution of a dynamic ignition model. The analysis starts by 
modifying the 1-D ignition model [Eq. (15) of Ref. 5] and the 
following considerations about multidimensional effects: The 
hot spot is enclosed by a surrounding shell that can be highly 
distorted by hydrodynamic instabilities. The hot-spot volume 
Vhs is bounded by Rayleigh–Taylor (RT) bubbles and spikes 
from the shell. The plasma in the bubbles is cold and does not 
contribute to the fusion yield. Following the analysis of Ref. 7, 
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we assume that only the “clean” hot-spot volume Vclean within 
the RT spikes (Fig. 121.15) is hot enough to induce fusion 
reactions, and the central temperature is unchanged by the RT 
evolution as long as the RT spikes do not reach the hot spot’s 
center. The 1-D ignition model can be extended to 3-D by 
integrating the alpha-particle energy deposition over the clean 
hot-spot volume, leading to 
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With respect to the 1-D case, the alpha heating is reduced by 
the clean volume fraction ,R R3 3

clean  where Rclean and R are 

Figure 121.15
Schematic of the free-fall model. Fusion reactions occur only in the clean 
volume within the Rayleigh–Taylor spikes. The spikes “free-fall” after satura-
tion of the linear growth.
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the clean and 1-D radii, respectively. We assume this to be the 
main effect of the implosion nonuniformities. In Eqs. (1)–(3), 
the hot-spot radius R, pressure P, and central temperature T 
are normalized with their stagnation values calculated without 
including the alpha-particle energy deposition ,Rstag

no a  ,Pstag
no a  and 

Tno
)
a defined later. The dimensionless time tV Ri stag

nox = a is a 
function of the implosion velocity Vi. Equations (1)–(3) repre-
sent the hot-spot energy balance, the temperature equation from 
the hot-spot mass conservation, and the thin-shell Newton’s 
law, respectively. For simplicity, we have neglected the radia-
tion losses (included in Ref. 5) in the derivation but retained 
in the simulation. The expansion [first term on the right-hand 
side of Eq. (1)] and the heat-conduction losses [right-hand side 
of Eq. (2)] are retained. This article focuses on the 3-D effects 
included in the term Rclean in Eq. (1). The term ca governs the 
ignition conditions and can be written as 
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where fa is the alpha-particle energy (3.5 MeV) and C0 - 
2.5 # 10–26 m3 keV–3 s–1 comes from approximating the vol-
ume integral of the fusion rate around a 4- to 15-keV central 
temperature with a power law +T3. The initial conditions are 
defined at the time of peak implosion velocity Vi : P(0) = P0, 
R(0) = R0, R V0 i-= ,o ^ h  and T(0) = T0. The stagnation values 

,Rstag
no a  ,Pstag

no a  and Tstag
no a are obtained by solving the dimensional 

form of Eqs. (1)–(3) without alpha-particle–energy deposi-
tion (ca = 0) and in the limit of large initial kinetic energy 
e 1.M V P R4i0

2
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stagnation values without alphas: 
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a a and l0 - 3.7 # 1069 m–1 s–1 J–5/2 is 
the coefficient of Spitzer thermal conductivity lSp . l0T5/2 for 
lnK . 5. Using the no-a stagnation values, the initial conditions 
of the dimensionless model are rewritten in the simple form 
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ignition model comprises Eqs. (1)–(3) and the initial conditions. 
Ignition is defined by the critical value of the parameter ca in 
Eq. (1), yielding an explosive singular solution. In the limit of 
e0 " 3, the critical value of ca depends solely on the effect of 
nonuniformities entering through the clean radius Rclean. In the 
absence of nonuniformities (1-D), Rclean = R and the critical 
value of ca is ca (1-D) - 1.1. As the alpha heating raises the 

hot-spot temperature, the RT spikes are ablated by the enhanced 
heat flux as well as by the alpha particles leaking from the hot 
spot and depositing their energy onto the spikes.8 This causes 
the ablative stabilization of the RT and an enhancement of 
the clean volume. This effect can be heuristically included by 
letting the clean radius increase up to the 1-D radius as the 
hot-spot temperature rises above the no-a value. 

The aim of the new ignition model is to identify a measur-
able parameter describing the effects of hot-spot nonunifor-
mities entering through the time history of the clean radius 
Rclean(x). The RT spikes first grow exponentially until reaching 
a saturation amplitude. After saturation, the spikes free-fall 
into the hot spot as shown in Fig. 121.15; the acceleration g(t) = 
Rll(t) determines the linear growth rates ,kg tRTc = ^ h  where 
k +  /R(t) is the perturbation wave number. The number of 
e foldings of linear growth is
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where tlin is the interval of linear growth up to saturation. In 
the nonlinear free-fall stage, the spikes’ amplitude grows as 
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where h(tlin) is the linear amplitude at saturation. For simplic-
ity, we assume that the linear growth can be neglected [small 
h(tlin)] with respect to the nonlinear growth so that the spike 
amplitude DR depends only on tlin and t. This leads to a clean 
radius Rclean = R – DR = R(tlin) + Rl(tlin)(t – tlin) for t > tlin. 
Before tlin, the clean radius equals the 1-D radius, Rclean . R. 
The time tlin depends on the amplitude of the inner DT-ice 
roughness at the end of the acceleration phase. The larger the 
initial nonuniformity level, the smaller the time tlin. We first 
solve Eqs. (1)–(3) without alpha-particle–energy deposition 
and compute .Rno

x
at _ i  Then we use Rno at  to determine Rclean

t  
using the free-fall model. The most-severe reduction of the 
clean volume corresponds to xlin = 0, when the nonlinear RT 
growth starts from the beginning of the deceleration phase. The 
number of e foldings of linear growth is directly proportional to 
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For a given xlin, we compute ,ne
no at  Rclean(x,xlin), and the yield-

over-clean without alphas (YOCno a): 



A Generalized Measurable Ignition Condition for Inertial Confinement Fusion

LLE Review, Volume 12124

	 ,
p TR

p TR
YOC

d

d

2 3

0

2 3

0no
clean

x

x

=
3

3

a

t tt

t tt

$

$
	 (8)

where ,pt  ,Tt  and Rt are the solutions of Eqs. (1)–(3) without alpha-
particle–energy deposition (i.e., ca = 0). The YOCno a is the 
ratio of the neutron yield for a reduced clean volume to the 1-D 
neutron yield for the case without alphas. Both YOCno a and 
ne
no at  depend on xlin, and a relation can be numerically derived, 

yielding the functional relation .n n YOCe e
no no no=a a at t ` j  Since 

ne
no at  is a measure of the initial nonuniformities, YOCno a can 

also be used to define the initial nonuniformities’ level. For a 
given value of YOCno a, it is possible to determine the ignition 
condition, including the effects of nonuniformities, by solving 
Eqs. (1)–(3) with alpha deposition for the corresponding clean 
radius Rclean

t  and by varying ca to find the critical value for a 
singular solution. We start by determining the transition time 
xlin from linear to nonlinear growth by solving Eqs. (1)–(3) 
with R Rclean .t t (valid in the linear regime) and a given value 
of ca. The resulting radius Ra(x) is used to compute the linear 
e foldings: 
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This is used to determine the time xlin by setting 
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leading to a functional relation xlin = xlin(YOCno a). Using xlin, 
the clean radius history follows from 

	 .R R Rclean lin lin lin-x x x x= +a a alt t t` ` `j j j 	 (10)

The effect of nonuniformities on ignition is studied by vary-
ing the initial level of nonuniformities through YOCno a, 
computing xlin, and finding the critical ca in Eq. (1), yielding 
a singular explosive solution. This leads to the 3-D ignition 
condition shown in Fig. 121.16, which can be approximated 
by ca(YOCno a)4/5 > 1.2. Using the definition ca in Eq. (4) 
and substituting the energy conservation and the shell mass 
at stagnation (modified to include the finite shell-thickness 
effects5), one finds that a ,R T/ /3 4 15 8

c t
)a _ i  leading to the fol-

lowing analytic ignition condition: 

	 . 1,R T 4 5 YOC
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where R tot
not a is the total areal density (approximately equal 

to the shell areal density) in g/cm2, T no a is the peak hot-spot 

temperature in keV, and n . 1. Equation (11) represents a mea-
surable criterion that can be used to assess the 3-D implosion 
performance, provided the alpha particles do not significantly 
change the hydrodynamics. This is the case with surrogate 
deuterium D2 and tritium–hydrogen–deuterium (THD) [with 
a few % of D (Ref. 9)] as well as low-gain (<10%) DT capsules. 
Obviously, ignited DT capsules do not require an ignition 
criterion. The effect of nonuniformities enters the ignition con-
dition through a single parameter: the YOC. The accuracy of 
the generalized ignition condition can be improved by includ-
ing the effect of the ablative stabilization of the deceleration 
RT and by tuning the power indices in Eq. (11) through a set 
of numerical simulations. We have carried out a set of 2-D 
simulations of ignition targets with varying inner-ice-surface 
roughness using the code DRACO.10 The initial ice roughness 
is increased until ignition fails. Each run is repeated without 
the alpha-particle–energy deposition to determine the no-a 
neutron yield and the YOCno a. A gain curve is generated by 
plotting the energy gain (fusion energy yield/laser energy on 
target) versus the YOCno a. Figure 121.17 shows the gain curves 
for (a) a 420‑kJ direct-drive–ignition target designed to simulate 
the 1-MJ indirect-drive point design11 for the National Igni-
tion Facility (NIF),12 (b) the 1.5-MJ, all-DT direct-drive point 
design,13 and (c) the 1-MJ direct-drive wetted-foam design.14 

To validate the clean volume analysis used in the analytic 
ignition model, we compare the result of 2-D simulations with 
the same gain curve obtained from 1-D simulations, where the 
fusion rate GvvH is reduced by a factor p equal to the YOCno a. 
Since the alpha-energy deposition depends on the product 

Figure 121.16
The critical parameter ca required for a singular solution of Eqs. (1)–(3) versus 
the YOC. The numerical solution can be fitted by a simple power law ca . 
1.2/(YOCno a)4/5.
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GvvHVclean, reducing GvvH in the 1-D code by the factor p = 
YOCno a is approximately equivalent to reducing the hot-spot 
volume by the clean volume fraction. In the 1-D code, the 
reduction of GvvH takes effect as long as the central hot-spot 
temperature is below 10 keV. For temperatures above 10 keV, 
the hot spot is robustly ignited, the RT becomes ablatively sta-
bilized, and p is increased linearly with the temperature until 
p = 1 for T > 15 keV. This effect can also be included in the 
analytic model by letting Rclean approach R1-D [in Eq. (1)] as the 
temperature exceeds its no-a value. This leads to a reduction of 
the YOC exponent in Eq. (11) (n . 0.8) and an analytic ignition 
condition . .R T 4 5 1YOCan

tot
no no no. .| t a a a/5 2 .0 8` _j i  Phas-

ing out the reduction factor p after ignition makes it possible 
for the 1-D code to correctly predict the burn-wave propagation 
through the cold shell and the final gain. The results from the 
modified 1-D code are compared with the 2-D simulations for 
the three targets above. As shown in Fig. 121.17, the modified 
1-D code predicts the “ignition cliff” for critical values of the 
YOCno a in agreement with the 2-D simulations. The ignition 
cliff represents the sharp decrease in gain occurring for a criti-
cal value of the YOC. After validating the modified 1-D code 
with the 2-D simulations, we used the fast 1-D code to generate 
a database of ,Rn

not a  ,Tn
no a  and YOCno a for marginally ignited 

capsules with the ignition YOC varying between 0.3 and 0.8. 
Marginal ignition is defined as the gain corresponding to the 
middle point of the ignition cliff (+half the 1-D gain). This 
is a physical definition of ignition describing the onset of the 
burn-wave propagation. The 3-D ignition criterion based on a 

power law of the three measurable parameters has been derived 
through the best fit of the simulation results. Figure 121.18 
shows the normalized gain curves (G/G1-D = gain/1-D gain) 
from the database versus the ignition parameter | representing 
the “best fit.” The best fit of the ignition criterion | . 1 yields 

	 .R T 4 7 YOC
.2 1fit

tot n
no

n
no no

/| t
a a a nb `_ l ji 	 (12)

with n . 0.63. This fit predicts the ignition cliff with a !10% 
error. The subscript n indicates the spatial and temporal average 
with the fusion rate (i.e., neutron average) used to approximate 
the experimental observables. Note that T no a in Eq. (12) is 
the 1-D temperature. Since the central temperature decreases 
slightly with increasing nonuniformities (lower YOC), one 
would expect a weaker dependence on the YOC in Eq. (12) 
when the 2-D (or the measured) temperature is used. This is 
shown by the fit from a LASNEX15 2-D simulation database 
of DT and surrogate THD9 NIF-point-design targets. A fit of 
the gain curves using the LASNEX database yields an ignition 
condition like Eq. (12) with n . 0.47. The best-performing DT 
cryogenic implosion on OMEGA16 to date has achieved an 
areal density of .0.2 g/cm2 and a temperature of .2 keV with 
a YOC of .10% (Ref. 17), leading to an ignition parameter | + 
10–2. Notice that the DY YYOCno ex/a -1` j requires the 1-D 
yield (Y1-D) as normalization of the experimental yield (Y ex). 
Since the 1-D yield is a strong function of the temperature, one 
expects a severe reduction of the temperature dependence in 
Eq. (12). A fit of the simulation database used in Fig. 121.18 

Figure 121.17
Energy gain versus YOCno a computed with 1-D (squares) and 2-D (diamonds) 
simulations. The 2-D simulations use a varying initial ice roughness. The 1-D 
simulations use a fusion rate reduced by the YOC to mimic the reduction of 
the clean hot-spot volume. The gain curves are for (a) a 420-kJ direct-drive 
surrogate of the 1-MJ indirect-drive NIF point design, (b) the 1.5-MJ, all-DT 
direct-drive point design, and (c) the 1-MJ direct-drive wetted-foam design. 

Figure 121.18
Gain curves from the simulation database. The normalized gain G/G1-D 
is plotted versus the ignition parameter |. The ignition cliff is predicted by 
| = 1 with a !10% error. 
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shows that an approximate ignition condition (!20% error) for 
DT targets can be written without the temperature as 

	 . ,R Y M0 1 116tot n
no

no
ex

sh
mg

.t
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a

.0 58
_ _i i: D 	 (13)

where Y16
ex is in units of 1016 neutrons and Msh (in mg) is the por-

tion of the shell mass stagnating at the time of peak neutron rate 
(bang time). For typical ICF implosions, Msh is about half of the 
unablated shell mass. The latter can be measured or estimated 
from the simulations with reasonable accuracy. This result is 
in reasonable agreement with the analysis of Spears et al.9 of 
the simulated down-scattered neutron spectrum database for 
the NIF point-design target (fixed Msh). An ignition condition 
similar to Eq. (12) can be recovered from Eq. (13) by setting 
Y ex = YOC • Y1-D and by using the following fit for Y1-D of DT 
targets from a 1-D simulation database: 

	 D
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no sh

mg

. ta

a
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The criteria of Eqs. (12) or (13) can be used to assess the per-
formance of cryogenic implosions on the NIF and OMEGA. 
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