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During FY08, a governance plan was implemented to formalize 
the scheduling of the OMEGA Laser Facility as an NNSA User 
Facility. Under this plan, OMEGA shots are allocated by cam-
paign. The majority of the FY08 target shots were allocated to the 
National Ignition Campaign (NIC), and integrated experimental 
teams from LLNL, LANL, SNL, and LLE conducted a variety of 
NIC-related experiments primarily at the OMEGA Laser Facility. 
Shots were also allocated in FY08 to the high-energy-density 
(HED) physics programs from LLNL and LANL. 

Under the governance plan, 25% of the facility shots are 
allocated to Basic Science experiments. Roughly half of these 
are dedicated to University Basic Science under the National 
Laser Users’ Facility program, and the remaining shots are 
allotted to Laboratory Basic Science, comprising peer-reviewed 
basic science experiments conducted by the national laborato-
ries and LLE/FSC. 

The OMEGA Facility is also being used for several campaigns 
by teams from the Commissariat à l’Énergie Atomique (CEA) 
of France and AWE of the United Kingdom. These programs are 
conducted at the facility on the basis of special agreements put in 
place by DOE/NNSA and the participating institutions. 

The external users during this year included six collaborative 
teams participating in the National Laser Users’ Facility (NLUF) 
program; many collaborative teams from the national laborato-
ries conducting experiments for the National Ignition Campaign 
(NIC); investigators from LLNL and LANL conducting experi-
ments for HED physics programs; and scientists and engineers 
from CEA of France and AWE of the United Kingdom. 

In this section, we briefly review all the external user activ-
ity on OMEGA during FY08, including NLUF programs and 
experiments conducted by users from LLNL, LANL, CEA, 
and AWE. 

NLUF Program
In FY08, the Department of Energy (DOE) issued a 

solicitation for NLUF grants for the period of FY09–FY10. 

National Laser Users’ Facility and External Users’ Programs

A total of 13 proposals were submitted to DOE for the NLUF  
FY09–FY10 program. An independent DOE Technical Evalua-
tion Panel comprised of Dr. Steven Batha (LANL), Dr. Gilbert 
(Rip) Collins (LLNL), Dr. Ramon Leeper (SNL), Prof. Howard  
Milchberg (University of Maryland), and Prof. Donald 
Umstadter (University of Nebraska, Lincoln) reviewed the 
proposals on 18 April 2006 and recommended that 11 of the 
proposals receive DOE funding and shot time on OMEGA in 
FY09–FY10. Table 116 IV lists the successful proposals. 

FY08 NLUF Experiments
FY08 was the second of a two-year period of performance 

for the NLUF projects approved for the FY07–FY08 fund-
ing and OMEGA shots. Six of these NLUF projects were 
allotted OMEGA shot time and received a total of 125 shots 
on OMEGA in FY08. Some of this work is summarized in 
this section.

Experimental Astrophysics on the OMEGA Laser
Principal Investigator: R. P. Drake (University of Michigan)
Co-investigators: D. Arnett (University of Arizona); T. Plewa 
(Florida State University); A. Calder (University of Chicago); 
J. Glimm, Y. Zhang, and D. Swesty (State University 
of New York–Stony Brook); M. Koenig (LULI, École 
Polytechnique, France); C. Michaut (Observoratorie de Paris, 
France); M. Busquet (France); J. P. Knauer and T. R. Boehly 
(LLE); P. Ricker (University of Illinois); and B. A. Remington, 
H. F. Robey, J. F. Hansen, A. R. Miles, R. F. Heeter, D. H. 
Froula, M. J. Edwards, and S. H. Glenzer (LLNL) 

The OMEGA laser, with its ability to produce pressures 
greater than 10 Mbars, can create conditions of very high 
energy density that are relevant to astrophysical phenomena. 
This project explores two such issues: the contribution of 
hydrodynamic instabilities to the structure in supernovae and 
the dynamics of radiative shock waves. The study of radiative 
shock dynamics is a continuation of successful campaigns at 
LLE that have employed x-ray radiography to quantify the 
average shock velocity and the structure of the dense, shocked 
matter. Of primary importance to understanding the role played 
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by radiation in the shock dynamics is the electron temperature 
throughout the shocked material. We have used x-ray Thomson 
scattering to make such temperature measurements.

In the experiment, ten OMEGA laser beams irradiate 
a Be drive disk with UV light for 1 ns. The beams deposit 
a total energy of +3.8 KJ, giving an average irradiance of 
+4.8 # 1014 W/cm2, corresponding to an ablation pressure of 
+46 Mbar in the Be drive disk. The enormous pressure first 
launches shocks and then accelerates the Be material, which 
in turn drives a shock into a cylinder filled with Ar gas. The 
shock moves through the Ar with an average velocity of the 
order of +150 km/s, which is fast enough that radiative effects 
play a significant role in the shock dynamics. An additional 
eight OMEGA laser beams irradiate a Mn foil for 1 ns to create 
the x rays needed to probe the shocked Ar system. The x rays 
are scattered through an average angle of 100° before being 
spectrally resolved by a crystal spectrometer and then detected 
by a four-strip gated microchannel plate.

Figure 116.55 shows some of the resulting data. The probe 
for these data was offset from the drive beams by 15 ns, plac-
ing the measurement in the precursor region of the shock. 
Additional measurements were made at different times, cor-

responding to different regions in the shock system. The signal 
includes two peaks produced by elastic scattering from tightly 
bound electrons and a broad red-shifted feature expected from 

Table 116.IV:  FY09–FY10 NLUF Proposals.

Principal Investigator Affiliation Proposal Title

F. Beg University of California,  
San Diego

Systematic Study of Fast Electron Transport and Magnetic  
Collimation in Hot Plasmas

R. P. Drake University of Michigan Experimental Astrophysics on the OMEGA Laser

R. Falcone University of California, 
Berkeley

Detailed In-Situ Diagnostics of Multiple Shocks

U. Feldman ARTEP, Inc. EP-Generated X-Ray Source for High Resolution 100–200 keV 
Point Projection Radiography

Y. Gupta Washington State University Ramp Compression Experiments for Measuring Structural Phase 
Transformation Kinetics on OMEGA

P. Hartigan Rice University Dynamics of Shock Waves in Clumpy Media

R. Jeanloz University of California, 
Berkeley

Recreating Planetary Core Conditions on OMEGA, Techniques  
to Produce Dense States of Matter

K. Krushelnick University of Michigan Intense Laser Interactions with Low Density Plasmas Using 
OMEGA EP

R. Mancini University of Nevada, 
Reno

Three-Dimensional Studies of Low-Adiabat Direct-Drive 
Implosions at OMEGA

M. Meyers University of California,  
San Diego

Response of BCC Metals to Ultrahigh Strain Rate Compression

R. D. Petrasso Massachusetts Institute  
of Technology

Monoenergetic Proton and Alpha Radiography of Laser-Plasma-
Generated Fields and of ICF Implosions
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Figure 116.55
Spectrum of x-ray Thomson-scattered light from the precursor region of 
radiative shock, showing peaks from elastic scattering and a shifted feature 
from free electrons.
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photons that are Compton scattered from the free electrons. 
By fitting a theoretical line to the observed signal, the electron 
temperature and average ionization can in principle be deduced. 
The fit shown is preliminary. 

Laboratory Experiments of Supersonic Astrophysical 
Flows Interacting with Clumpy Environments
Principal Investigator: P. Hartigan (Rice University)
Co-investigators: R. Carver and J. Palmer (Rice University); 
J. Foster, P. Rosen, and R. Williams (AWE); B. Wilde and 
M. Douglas (LANL); A. Frank (University of Rochester); and 
B. Blue (General Atomics)

Strong shock waves occur in many astrophysical systems, 
and the morphology of the emission lines that occur from the 
hot gas behind these shocks is often highly clumpy. The objec-
tive of this sequence of NLUF experiments is to develop scaled 
laboratory experiments to study the hydrodynamics of clumpy 
supersonic flows. The laboratory work complements new astro-
physical images from the Hubble Space Telescope (HST) that 
were motivated by the results of the NLUF program.

Our work in the past year has concentrated first on develop-
ing and implementing an experimental design that could follow 
the destruction of a single clump by the passage of a strong 
shock and then expanding this work to include two clumps 
that are close enough that shadowing significantly affects the 
dynamics of the interactions. A sample of the results from 
these successful experiments appears in Fig. 116.56. Upper 
panels (a) and (b) show how a single clump flattens and the 
bow shock widens as time progresses in the interaction. 
Remarkably, we have now seen this exact phenomenon in 
our most-recent image of one of the knots in a Herbig–Haro 
object (HH 2). The bottom panels show Ha images obtained 
with HST in 1994, 1997, and 2007. The new bow shock clearly 
expands as a result of the strong wind that passes from right 
to left in the figure. 

A large complex region of multiple clumps within HH 2 
shown in the figure appears to have significant morphological 
changes. In several cases significant differential motions exist 
between adjacent clumps, and it now appears that shadowing 
and merging are probably common in such flows. We see 
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Figure 116.56
OMEGA experiments (top) and three astronomical images (bottom) of shock waves around single and multiple clumps. The experimental images (a) and (b) 
show how a shock wave flattens and tears apart an obstacle. Analogous behavior has just been observed unambiguously for the first time with a third-epoch 
Hubble Space Telescope image of shocks in HH 2 (bottom). Note how the new bow shock widens in the most-recent 2007 image. The third experimental image 
(c) shows how shadowing affects two clumps. Multiple clump interactions also occur in HH 2.
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analogous behavior in the laboratory experiment labeled (c) 
where shadowing effects have created a bumpy bow shock 
around two closely spaced obstacles in the flow. In the coming 
year we will be evolving this design to address shocked flow 
through a medium with dozens of small clumps. Two additional 
third-epoch HST images will complement the experimental 
work in the coming year.

Multiview Tomographic Study of OMEGA Direct-Drive-
Implosion Experiments
Principal Investigators: R. Mancini (University of Nevada, 
Reno), R. Tommasini (LLNL)
Co-investigators: N. Izumi (LLNL); I. E. Golovkin, (Prism 
Computational Sciences); D. A. Haynes and G. A. Kyrala 
(LANL); and J. A. Delettrez, S. P. Regan, and V. A. 
Smalyuk (LLE)

The determination of the spatial structure of inertial 
confinement fusion implosion cores is an important problem 
of high-energy-density physics. To this end, three identical 
multimonochromatic x-ray imagers (DDMMI’s), designed 
and built as part of this project, are currently being used 
in direct-drive OMEGA implosion experiments to perform 
simultaneous observations along three quasi-orthogonal lines 
of sight (LOS). The implosions are driven with 60 OMEGA 
beams using high- and low-adiabat laser pulses, and the targets 
are gas-filled plastic shells. At the collapse of the implosion, 
the hot and dense core plasma achieves temperatures in the 
1-keV to 2-keV range and electron number densities in the 1 # 
1024 cm–3 to 3 # 1024 cm–3 range. X-ray K-shell line emission 
from a tracer amount of argon added to the deuterium fuel is 
a suitable spectroscopy diagnostic for this temperature and 
density range. In addition, x-ray absorption from a titanium 
tracer layer embedded in the plastic yields information about 
the compressed shell.

Core images recorded by DDMMI instruments are formed 
by a large array of 10-nm-diam pinholes, with an +100-nm 
separation between pinholes, and are reflected off a depth-
graded WB4C multilayer mirror with an average bilayer 
thickness of 15 Å. The instrument is equipped with 10-cm-
long mirrors that permit the observation of narrowband 
x-ray images over a 3-keV to 5-keV photon energy range. 
They have a magnification of 8.5, provide spatial resolution 
of approximately 10 nm, and record gated (framed) images 
characteristic of a 50-ps time interval. The broad photon 
energy range, afforded by the use of long mirrors, covers the 
K-shell line emission from argon ions as well as the K-shell 
line absorption from titanium L-shell ions. As an illustration 

of the data recorded by DDMMI instruments, Fig. 116.57 
displays gated argon Lyb (1s 2S–3p 2P, ho = 3936 eV) nar-
rowband core images observed simultaneously along three 
quasi-orthogonal LOS: TIM-3, TIM-4, and TIM-5. These 
images are taken close to the state of maximum compression 
of the core. The photon energy range of these narrowband 
images is given by the (mainly) Stark-broadening widths of 
the line shape, which for the plasma conditions achieved in 
these cores is in the 60-eV to 70-eV range. The multiview 
data recorded with DDMMI instruments make it possible to 
study the three-dimensional structure of the implosion core. 
It is interesting to observe the differences in distribution of 
brightness associated with the Lyb core images along differ-
ent LOS, which depends on both temperature and density 
conditions in the core. In addition to differences in intensity 
distributions, there are differences in shapes: the image 
observed along TIM-4 is the most-elongated one (i.e., oval of 
largest eccentricity), while the shapes observed along TIM-3 
and TIM-5 are less elongated. Argon Lya (1s 2S–2p 2P, ho = 
3320 eV) and Heb (1s2 1S–1s3p 1P, ho = 3684 eV) images 
are also recorded, thus providing data that will determine 
the temperature and density distribution in the core. Several 
analysis methods initially developed and tested for single 
LOS data analysis are now being extended to consider the 
analysis of data simultaneously observed along three LOS 
for a three-dimensional reconstruction of the spatial structure 
in the core. 
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Figure 116.57
Gated argon Lyb narrowband images of the implosion core simultaneously 
recorded by DDMMI instruments along three quasi-orthogonal lines of sight: 
TIM-3, TIM-4, and TIM-5 for OMEGA shot 49956.
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Monoenergetic Proton Radiography of ICF Implosions
Principal Investigators: R. D. Petrasso and C. K. Li (Massa-
chusetts Institute of Technology)
Co-investigators: F. H. Séguin and J. A. Frenje (MIT); J. P. 
Knauer and V. A. Smalyuk (LLE); and J. R. Rygg and R. P. J. 
Town (LLNL)

MIT’s NLUF program has continued an ongoing series of 
experiments using monoenergetic charged-particle radiography 
in the study of plasmas and transient electromagnetic fields 
generated by the interactions of OMEGA laser beams with 
plastic foils and ICF target capsules. This work, involving 
novel studies of field instabilities, magnetic reconnection, ICF 
implosion dynamics, and self-generated electromagnetic fields 
in ICF implosions, has already resulted in many publications, 
including four in Physical Review Letters1–4 and one in 
Science,5 as well as several invited talks at conferences.6–9

Figure 116.58 shows the basic experimental setup for imag-
ing of implosions (see Ref. 10 for more general details of the 
radiography method). Up to 40 OMEGA laser beams interact 
with a target capsule, which has a spherical plastic shell with 
or without a gold cone inserted for “fast-ignition” studies. A 
radiographic image of the imploded capsule is made by using 
a special backlighter and a matched imaging detector. The 
backlighter is a glass-shell ICF capsule filled with D3He gas and 
imploded by +20 OMEGA laser beams, producing D3He pro-
tons (14.7 MeV) and other fusion products. CR-39 nuclear track 
detectors are used in conjunction with appropriate filters and 
processing techniques to record individual charged particles and 
their energies in the detector plane. Since the burn duration of 
the D3He implosion is short (+130 ps) relative to the nanosecond-
scale duration of the capsule illumination (1 ns) and subsequent 
evolution, and since the relative timing of the backlighter and 

the capsule illumination was adjustable, it is possible to record 
images at different times during implosions. 

The experiments resulted in the discovery and character-
ization of two distinctly different types of electromagnetic 
configurations in ICF implosions (Fig. 116.59), as well as the 
measurement of capsule radius and areal-density (tR) tempo-
ral evolution (Fig. 116.60).4,5 Proton radiography reveals field 
structures through deflection of proton trajectories. The two 
field structures evident in Fig. 116.59 consist of (1) many radial 
filaments with complex striations and bifurcations, permeating 
the entire field of view, of magnetic field magnitude 60 T; and 
(2) a coherent, centrally directed electric field of the order of 
109 V/m within the capsule, leading to the central concentration 
of protons in Fig. 116.59(b). Figure 116.60 shows the values of 
capsule radius and tR at various times during the implosions 
of spherical capsules studied in images similar to those in 
Fig. 116.59.4 The size was inferred from the spatial structure of 
the images, while tR was determined from the energy loss of 
the imaging protons while passing through the capsule center. 
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Figure 116.58
Experimental setup with proton backlighter, subject implosion, CR-39 imaging 
detector, and laser beams. The subject implosion shown here has a spherical 
plastic shell, but images were also made with “cone-in-shell” capsules (see 
Fig. 116.59).
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Figure 116.59
Images of a 430-nm-radius spherical CH capsule with attached gold cone, 
before and during implosion. Images (a) and (c) show the unimploded capsule 
used in OMEGA shot 46531. Images (b) and (d) show a capsule at 1.56 ns 
after the onset of the laser drive (shot 46529). In (a) and (b) dark areas cor-
respond to regions of higher proton fluence, while in (c) and (d) dark areas 
correspond to regions of lower proton energy. The energy image values in the 
region shadowed by the cone are mostly noise since very few protons were 
detected in that region.
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The relationship of the measured sizes and tR’s to predictions 
of the 1-D code LILAC are also shown.

X-Ray Thomson-Scattering Spectra  
in Shock-Compressed Beryllium
Principal Investigators: R. Falcone and H. J. Lee (Uni-
versity of California, Berkeley), P. Neumayer and S. H.  
Glenzer (LLNL)

Direct measurement of the exact thermodynamic and physi-
cal properties of dense matter is of great interest to test dense 
plasma modeling and to address fundamental physics questions 
such as the equation of state and the structure of dense matter. 
Powerful laser-produced x-ray sources have been used to probe 
dense matter, which has enabled a quantitative in-situ diagnostic 
of densities and temperatures using x-ray Thomson scattering 
measurements.11 We have continued x-ray scattering experi-

Figure 116.60
Measured capsule radius (a) and tR (b) as a function of time,4 from a series of images of spherical implosions (40 drive beams in a 1-ns flat-top pulse). The 
curves show LILAC 1-D simulations.

Figure 116.61
Time-integrated images for E > 2 keV show the 
emission produced by heater and probe beams 
for (a) 25° scattering and (b) 90° scattering.
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ments in shock-compressed beryllium to measure the electron 
temperature and density for varying drive-beam conditions.

Two types of planar targets coupled with Mn backlighters 
were deployed for the x-ray Thomson-scattering measurements 
of 25° and 90° scattering angles on the OMEGA laser. A 250-nm-
thick beryllium foil was driven by 12 beams smoothed with 
distributed phase plates (SG-4) overlapped in a +1-mm-diam 
focal spot. Laser intensities of 1014 W/cm2 < I < 1015 W/cm2 in a 
4-ns-long constant or 5-ns shaped pulse were applied. Radiation-
hydrodynamic calculations performed using Helios12 indicate 
that under these irradiation conditions, a strong shock wave 
is launched in the solid target, compressing it homogeneously 
at pressures in the range of 20 to 60 Mbar. Twelve additional 
focused beams (+200-nm spot) illuminate a Mn foil to produce 
+6.18-keV Hea x rays for 25° scattering (17 backlighter beams 
are used for 90° scattering). Figures 116.61(a) and 116.61(b) 
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present time-integrated images showing the emission by drive 
and backlighter beams. A highly oriented pyrolytic graphite 
(HOPG) crystal spectrometer coupled to a gated microchannel 
plate detector in TIM-3 has been used as a spectrometer and 
a detector. The scattered photon fraction is determined by the 
product nevTSl, where vTS is the Thomson-scattering cross 
section and l is the length of the scattering volume.

Figures 116.62(a) and 116.62(b) show the scattering spectra 
(solid lines) and fits (dotted lines) for a 25° and a 90° scat-
tering angle from 4-ns-long constant drive beams, which 
give a pressure of 30 Mbar. Two small plasmon features in 
addition to the two elastic peaks from the 6.18-keV Mn Hea 
line and the 6.15-keV intercombination line are measured 
at a 25° scattering angle, indicating a collective scattering 
regime with a scattering parameter a = 1/kms = 1.56 and ms 
being the screening length and k the scattering vector with 

. .k E hc g4 2 1 36sin A0
1ir= = -c` _j i  The frequency shift of 

the plasmon is determined by the frequency of plasma oscil-
lations. Calculated spectra using the theoretical form factor 
indicate that the solid beryllium is compressed by a factor of 
3 with 7 # 1023 cm–3 < ne < 8 # 1023 cm–3. 

The Compton-scattering spectrum measured at a scattering 
angle of i = 90° accessing the noncollective scattering regime 
with a = 0.5 and k = 4.4 Å–1 shows a parabolic spectrum down-
shifted in energy from the incident radiation by the Compton 
effect; the shift is determined by the Compton energy EC = 
h2k2/2me = 74 eV. The theoretical fit to the measured spectrum 
indicates the same densities and temperatures as obtained for 
collective scattering. Details may be found in Ref. 13. 

To generate higher compression, the intensity of nanosecond 
laser beams was shaped to have (1) a 4-ns-long step-like foot, 
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Figure 116.62
X-ray scattering data (solid lines) and fits (dotted lines) of 25° forward scattering [(a) and (c)] and 90° backscattering [(b) and (d)] with different driving beams.
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with a 2-ns first foot at 8 # 1013 W/cm2 and a 2-ns second foot at 
1.6 # 1014 W/cm2 and (2) a 1-ns-long peak at 4.8 # 1014 W/cm2 
following a 4-ns step-like foot. Radiation-hydrodynamic simula-
tions show that the three shock waves from each step merge at 
about 6 ns after the beginning of drive beams and compress the 
target by more than a factor of 3.5.

Figures 116.62(c) and 116.62(d) show the experimental 
scattering spectra (solid lines) at a 25° and a 90° scattering 
angle and fits (dotted lines) from 5-ns-long shaped drive beams 
that drive a strong shock reaching +60 Mbar. The calculated 
spectrum with ne = 9 # 1023 cm–3, Te = 15 eV, and Z = 2 gives 
a best fitting to the Compton-scattering data. The parameters 
from the fit to the data in the collective scattering regime 
are in good agreement with the ones from the noncollective 
scattering data within error bars of !20% in temperature. 
Theoretical x-ray scattering spectra have been calculated in a 
random phase approximation for the free-electron feature and 
density-functional theory for the ion feature. 

Through this campaign, we have successively accomplished 
the measurement of the Compton and plasmon resonance on 
shock-compressed Be. In addition to the accurate measurement 
within !7% in density, we have demonstrated that we can charac-
terize multiply shocked matter by changing the drive pulse shape 
and intensity. This opens up the possibility of obtaining a com-
pression of ne > 1.0 # 1024 cm–3 by co-propagating and counter-
propagating the geometry of driving beams. In future research, 
the Thomson-scattering method will be used to investigate the 
equation of state in the multiple-shock-compressed matter.

FY08 LLNL OMEGA Experimental Programs
In FY08, Lawrence Livermore National Laboratory 

(LLNL) led 238 target shots on the OMEGA Laser System. 
Approximately half of these experiments were dedicated to 
the National Ignition Campaign (NIC); the other half were 
dedicated to supporting the high-energy-density stewardship 
experiments (HEDSE’s).

Objectives of the LLNL-led NIC campaigns on OMEGA 
included the following:

•	 Laser–plasma	interaction	studies	of	physical	conditions	
relevant	for	the	National	Ignition	Facility	(NIF)	igni-
tion	targets	

•	 Studies	of	the	x-ray	flux	originating	from	the	laser	
entrance	hole	(LEH)	window	of	a	hohlraum,	which	might	
impact	the	performance	of	a	fusion	capsule	

•	 Characterization	of	the	properties	of	warm	dense	
matter—specifically	radiatively	heated	Be	

•	 Studies	of	the	physical	properties	of	capsules	based	on	
Cu-doped	Be,	high-density	carbon,	and	conventional	
plastics,	including	new	high-resolution	shock-veloci-
metry	measurements	

•	 Determining	ablator	performance	during	the	implosion	
of	NIC-candidate	ablators	

•	 Experiments	to	study	the	physical	properties	(thermal	
conductivity)	of	shocked	fusion	fuels	

•	 High-resolution	measurements	of	velocity	nonuniform-
ities	created	by	microscopic	perturbations	in	NIF	abla-
tor	materials	

•	 Demonstration	of	Tr = 100-eV	foot-symmetry	tuning	
using	a	re-emission	sphere	

•	 Demonstration	of	Tr = 100-eV	foot-symmetry	tuning	
using	a	backlit	thin-shell	capsule

•	 Quantification	of	x-ray	foot	preheat	caused	by	laser–
window	interaction

The LLNL HEDSE campaigns included the following:

•	 Quasi-isentropic	[isentropic	compression	experiment	
(ICE)]	drive	used	to	study	material	properties	such	as	
strength,	equation	of	state,	phase,	and	phase-transition	
kinetics	under	high	pressure	

•	 Development	of	long-duration,	point-apertured,	point-
projection	x-ray	backlighters	

•	 Development	of	an	experimental	platform	to	study	non-
local	thermodynamic	equilibrium	(NLTE)	physics	using	
direct-drive	implosions	

•	 Opacity	studies	of	high-temperature	plasmas	under	
LTE	conditions	

•	 Development	of	multikilovolt	x-ray	sources	using	under-
dense	NLTE	plasmas	for	x-ray	source	applications

•	 Studies	of	improved	hohlraum	heating	efficiency	using	
cylindrical	hohlraums	with	foam	walls	
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•	 Laser-driven	dynamic-hohlraum	(LDDH)- 
implosion	experiments

•	 High-speed	hydrodynamic	jets	for	code	validation

1. NIC Experiments
Laser–Plasma	Interactions:  The laser–plasma interac-

tion experiments continued to emulate the plasma conditions 
expected along the laser-beam path in inertial confinement 
fusion designs. An interaction beam (beam 30) aligned along 
the axis of a gas-filled hohlraum is used to study laser-beam 
propagation. Figure 116.63 shows the results of laser–plasma 
interaction experiments that were performed to study the propa-
gation of laser light through high-density % ,N N 10>e cr` j  
millimeter-long, high-temperature (Te > 2.5 keV) plasmas. 
These results provide limits on the intensity of the inner-cone 
beams to maintain stimulated Raman scattering (SRS) back-
scatter below the 5% requirements for ignition on the NIF.
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Figure 116.63
Measured time-integrated backscatter as a function of density in a high-
temperature millimeter-long plasma at three interaction-beam intensities: 10 # 
1014 W/cm2 (squares), 5 # 1014 W/cm2 (diamonds), and 2.5 # 1014 W/cm2 
(circles). For densities above 10%, the backscatter is dominated by stimulated 
Raman scattering (SRS); the measured time-integrated stimulated Brillouin 
scattering (SBS) is less than 1%.

These experiments also quantified the effect of polarization 
smoothing in high-density plasmas where SRS dominates, 
providing further guidance for the design of a low-backscatter, 
indirect-drive ICF experiment. Figure 116.64 shows that add-
ing polarization smoothing increases the intensity threshold 

for SRS by a factor of 1.5, which was predicted by pf3D code 
simulations completed prior to these experiments.

Prior work on stimulated Brillouin scattering (SBS) mitiga-
tion was documented and published in Refs. 14 and 15.

X-Ray	Preheat	from	an	LEH	Window:  The NIF ignition 
hohlraum was gas filled with polyimide windows over the laser 
entrance holes. During the early part of the laser pulse, the beams 
had to burn through the windows and fill-gas before reaching the 
hohlraum walls. As a result, the x rays generated during window 
burnthrough occured +300 ps before the hohlraum x rays. There 
was concern that the resultant early deposition of energy at the 
capsule poles could have generated an asymmetric pressure 
wave, or that asymmetric preheat could have seeded instabilities 
in crystalline Be. Initial LASNEX calculations predicted that 
x-ray production would not be high enough to significantly per-
turb the capsule, but an extrapolation of existing experimental 
data suggested that LASNEX might have underestimated the flux 
from the windows. A short series of OMEGA shots were carried 
out to measure the absolute x-ray spectrum generated during 
burnthrough of polyimide windows of various thicknesses, and 

Figure 116.64
Instantaneous SRS reflectivities measured 700 ps after the rise of the heater 
beams in a 11.5% Ncr plasma. Experiments without polarization smoothing 
(squares) show a threshold (reflectivity of 5%) for SRS at an intensity of 4.5 # 
1014 W/cm2 and a corresponding gain of 11. Adding polarization smoothing 
increases this threshold to an intensity of 6.8 # 1014 W/cm2, which corresponds 
to an SRS gain of 17. pf3D simulations performed prior to the experiments are 
shown (open symbols) and predicted the main results of these experiments. The 
gains are calculated by post-processing hydrodynamic simulations using LIP.
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Since no adverse effect was expected on the capsule even with 
nominal x-ray production, the low measured x-ray flux indi-
cated that the ignition point design was robust to perturbations 
imposed on the capsule during window burnthrough.

Symmetry	Diagnosis	by	a	Re-emission	Sphere:  The NIC 
proposes to set the first 2 ns of hohlraum radiation symmetry 
by observing the instantaneous soft x-ray re-emission pat-
tern from a high-Z sphere in place of the ignition capsule.16 
To assess this technique under NIC conditions, we used the 
OMEGA Laser Facility to image the re-emission of Bi-coated 
spheres with 200-ps temporal, 50- to 100-nm spatial, and 30% 
spectral resolution. The sphere was driven by 70% NIC-scale 
vacuum Au hohlraums heated to Tr = 100 eV using two cones/
side laser-beam illumination (Fig. 116.66). The laser beams 
smoothed with SG4 phase plates using 1-ns square pulses 
generated intensities at the hohlraum wall that were similar to 
the foot of the NIF ignition design.

Good re-emit images were acquired at 100- to 115-eV NIF 
foot temperatures for both 900- and 1200-eV energy bands (see 
Fig. 116.67). The re-emission patterns at 900 eV and 1200 eV 
were consistent with each other, but their sensitivity ratio was 
greater than expected; this will be confirmed in FY09. We also 
demonstrated the expected P P2 0 dependence to the laser-cone 
power ratio (Fig. 116.67). The experiments demonstrated the 
required accuracies of 5 %7 P P P P< 2 0 4 0] `g j  Legendre mode-
flux asymmetry at both 900-eV and 1200-eV re-emission 
photon energies.

Viewfactor calculations were in agreement with the experi-
mentally measured hohlraum radiation flux and re-emit images 
when assuming 50% inner-beam and 95% outer-beam coupling 

the inner- to outer-beam cone delay and intensities spanning 
those expected to be used on the NIF. The primary diagnostic 
on these shots was the Dante x-ray diode array. 

Figure 116.65 shows the measured flux from Channel 5 (cen-
tered from 600 to 800 eV) for a series of five shots, together with 
LASNEX simulations for each shot. The results showed that in 
all cases the measured flux integrated over the first nanosecond 
was +2# lower than predicted by LASNEX. The x-ray flux scaled 
as expected—approximately linearly with window thickness. 

Figure 116.66
The re-emit experimental setup for the NIF 
and OMEGA.
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Figure 116.65
A measured signal from Dante Channel 5 for the window preheat shots. The 
legend shows an intensity of cone-1 beams in TW/cm2 (first number), cone-2 
intensity (second number), and the delay between beams (third number). The 
indicated curve depicts a 1.5-nm-thick foil; all others have 0.5-nm thickness.
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into x rays at the hohlraum wall (Fig. 116.68). Radiation-
hydrodynamic simulations used to design the NIC ignition 
target confirm the lower inner-beam coupling to within 10%, 
as do the thin-walled shell experiments described below. 

Symmetry	Diagnosis	by	Thin	Shell:  Should it prove necessary 
to further optimize the symmetry during the second and third 
shocks to obtain maximum yield, the shape of a thin-shell capsule 
in flight can be measured during this time period by x-ray backlit 
imaging. The thin shell will be made of the ignition ablator mate-

rial with its thickness adjusted to optimize its sensitivity to drive 
at different times during the foot of the pulse. Recent experiments 
at the OMEGA Laser Facility demonstrated the viability of area 
backlit images of 0.6-scale Be capsules doped with 2% Cu under 
NIC foot conditions by using a 1-ns pulse shape for both drive 
and backlighter beams, as shown in Fig. 116.69.

To determine the drive symmetry during the foot of the 
pulse, a scale-0.6 hohlraum was illuminated with a 1.0-ns pulse, 
giving a drive peaking at 125 eV early in time. Sixteen high-
precision images of the converged shell were then recorded on 
each shot with a 4.7-keV (Ti) foil backlighter, at times between 
6.6 and 7.4 ns; an example is shown in Fig. 116.70.

The sensitivity of the measured P2 distortions to changes 
in the fraction of the power in the inner and outer cones of 
beams confirmed the predictions of simulations, as shown 
in Fig. 116.71, albeit with an offset consistent with 10% less 
inner-cone absorption than predicted by this simulation. The 

Figure 116.68
Simulated viewfactor versus measured re-emit images for different inner-
beam powers (outer beams: 0.28 TW/beam).

Figure 116.69
Schematic of the scale-0.6 NIC hohlraum 
and thin-shell capsule used on OMEGA 
to validate the plans to control the drive 
symmetry during the foot of the ignition 
pulse where Tr L 100 eV. The obtained 
backlit images demonstrated that the 
measured ball distortion has the expected 
sensitivity to the  = 2 component of 
the drive and can measure the Legendre 
moments to the needed precision.
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Figure 116.67
Re-emit images measured at 0.8 ns at 900-eV and 1200-eV energy bands for 
constant 0.28-TW outer-beam power and variable inner-beam power, and the 
corresponding measured re-emitted P P2 0 versus laser-cone power fraction.
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Figure 116.71
Measured versus simulated thin-shell P2 relative to distance traveled versus 
cone fraction. 

results verified that the overall measurement accuracy (!1% in 
P2, extrapolating to !0.3% at full NIC scale and larger distance 
traveled) is sufficient to meet the !0.5% P2 requirement for foot 
symmetry control in the NIC.17

X-Ray	Thomson	Scattering	(XRTS)	Conductivity:  The 
ultimate goal of this campaign was to measure the plasmon 
broadening in collective x-ray Thomson scattering (XRTS) to 
extract the plasma collisionality and, therefore, conductivity, 
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which is important to accurately model capsule performance 
on the NIF. For this purpose, 250-nm Be foils were driven at 
3.5 # 1014 W/cm2 over a total duration of 3 ns (see Fig. 116.72). 
From 1-D hydrodynamic simulations (HELIOS) we expected 
shock-compressed electron densities between 6 and 8 # 1023/cc 
and electron temperatures in the range of 10 to 15 eV at times 
$4.25 ns after the start of the heater pulse at the Be rear sur-
face. The Cl Ly-a line at 2.96 keV was employed to probe the 
plasma parameters. The scattered signal was dispersed by the 
GTS HOPG spectrometer in TIM-6 and recorded by XFRC4 
coupled to the LLNL charge-coupled device (CCD).
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Figure 116.72
Schematic of the experimental configuration.

Figure 116.73 shows both the recorded spectrum from a 50° 
scattering shot fitted by a synthetically generated spectrum 
corresponding to a plasma density of ne = 1.5 # 1023/cc and 
an electron temperature of 8 eV. We note that the shape of the 
red-shifted plasmon was sensitive to both ne and Te, and that 
Te, on its own, was sensitive through detailed balance to the 
ratio of the blue- to red-shifted plasmon.

The density was 4# to 5# below the values predicted by the 
hydrodynamic simulations. This suggests that either the shock 
speed was slower than predicted, leaving an uncompressed, 
possibly preheated, region probed, or that a low-density blow-
off plasma was generated at the back surface, delaying shock 
breakout. In either case, the 2.96-keV Cl Ly-a radiation was 

Figure 116.70
Image of a thin shell converged to half its initial radius by a 125-eV x-ray 
drive in the NIC-like hohlraum.
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unable to penetrate to the shocked region and out of the target 
again. Future shots will optimize target and probe design.

Convergent	Ablation:  Determining ablator performance dur-
ing an implosion was a critical part of the NIF tuning campaign. 
In particular, it was vital to have accurate, in-flight measure-
ments of the velocity, areal density, and mass of the ablator. In 
tests on OMEGA, a new technique was developed that achieved 
time-resolved measurements of all these parameters in a single, 
area-backlit, streaked radiograph of an indirectly driven capsule 
(Fig. 116.74). Abel inverting the absorption profile to determine 
the density profile at each time step accomplished this. Results 

showed a clear difference in ablated mass for Cu-doped Be-
capsule implosions with different initial shell thicknesses, illus-
trating that this technique was suitably precise to be used as a 
remaining mass diagnostic for the NIF tuning campaign.

Deuterium	Thermal	Conductivity:  Multiple shocks rever-
berating in a thin layer of liquid deuterium made it possible to 
attain quasi-isentropic compression of deuterium. Simultane-
ous measurements of velocity, reflectivity, and emissivity were 
used to investigate the transport properties of compressed 
deuterium. As seen in Fig. 116.75, the onset of a more highly 
reflective state at a temperature of 4000 K and pressure of 
1.5 Mbar demonstrated a phase transition to a highly conduc-
tive, metal-like phase. 

Figure 116.74
Streaked radiograph showing a converging capsule leading up to bang time 
at 3.3 ns.

Figure 116.75
Experimental setup and VISAR record of shocked 
liquid D2.
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Capsule	Instability	Seeding	by	Shock	Nonuniformity:		The 
CAPSEED campaigns performed measurements of fluid-
velocity nonuniformities created by microscopic perturba-
tions in NIC ablator materials. Begun in FY07 and continued 
through FY08, these campaigns employed a newly commis-
sioned instrument—the OMEGA high-resolution velocimeter 
(OHRV)—as the primary diagnostic. During FY08 we carried 
out a survey of the three candidate NIC ablators: Cu-doped Be, 
polycrystalline diamond, and Ge-doped CH. In addition, much 
progress was made on analyzing of the data sets and extracting 
quantitative results. The experiments in October 2007 focused 
on microcrystalline diamond samples, Be(Cu) targets with 
preimposed ripples, and sections of capsule shells made from 
both types of target. Analysis of the rippled Be(Cu) targets 
showed good agreement between the measured shock-ripple 
amplitude and simulations of the time evolution of the ripple 
perturbation (Fig. 116.76).

A surprising result was finding that the shock-front nonuni-
formities produced by diamond samples shocked below the melt 
transition were significantly higher than the nonuniformities 
produced by the same material shocked into the solid–liquid 
coexistence region (Fig. 116.77). Further experiments in Febru-
ary studied Be targets shocked into the solid–liquid coexistence 
region, on polycrystalline diamond samples with nanometer-
sized grains and on CH(Ge) targets. A third campaign in 

Figure 116.76
(a) Velocity spectra recorded at 180 ps (solid), 280 ps (dashed), and 390 ps (dotted) after shock breakout recorded from targets with a preimposed sinusoidal 
ripple of 25-nm wavelength and 125-nm initial amplitude at the interface between the Be(Cu) ablator and the PMMA indicator material. The 25-nm ripple 
mode occupies the spectral peak near a 0.04-nm–1 spatial frequency. (b) Velocity amplitude of the isolated ripple modes (symbols) compared to the prediction 
from a hydrodynamic simulation (curve). Inset: the same data on an expanded time scale.
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April continued to examine the three ablator candidates, with 
a particular focus on Be(Cu) flats constructed with the layered 
Cu-doping scheme that is specified in the NIC point design for 
Be capsules. Results from these campaigns are being used to 
assess the different ablator candidates.

2. High-Energy Stewardship Experiments
Material	Properties:  In FY08, the Materials Strength 

Experimental Team performed two types of experiments on 
OMEGA: vanadium Rayleigh–Taylor (VRT) strength measure-
ments and ramped-drive-development experiments that use 
indirect x-ray illumination from a hohlraum.

The VRT experiment tested models of material strength 
by measuring the Rayleigh–Taylor (RT) growth factors on 
accelerated sinusoidally rippled samples of polycrystalline 
vanadium.18 When driven, the amplitude of the rippled inter-
face will grow via the RT hydrodynamic instability, with the 
amount of growth depending on the drive conditions and vana-
dium material strength at high pressures and strain rates. The 
amount of growth will be derived from face-on radiographs 
taken with the laser-driven x-ray backlighter. Our experi-
ments were conducted to confirm the drive and growth-factor 
measurements of the previous experiments and to understand 
the results in terms of various material-strength models. The 
ripple sample had a period of 60 nm with an initial amplitude of 
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0.6 nm. Figure 116.78 shows a radiograph of the ripples at 70 ns 
after the start of the drive using a vanadium He-a backlighter 
(+5.2 keV). From these data, we derived a measured growth 
factor of 12. Our data were compared with hydro simulations 
using three different strength models. The models we studied 
were Steinberg–Guinan (SG), Preston–Tonks–Wallace (PTW), 
and the new multiscale model that was developed at LLNL by 
Arsenlis and Becker. Figure 116.79 shows the results. We found 
that, in all cases, our measurements required modification to 
the model input parameters. With these modified input param-
eters, however, all three models were brought into agreement 
with the measurement. An experimental campaign over several 
different pressures and strain rates would now be required to 
distinguish between the models.

We performed three additional experiments that developed 
isentropic drives using hohlraums to drive a reservoir-gap-
sample target package.19 We employed an extended scale-2.5 

Figure 116.77
Intensity patterns of the probe beam reflected from shock fronts transmitted through polycrystalline diamond samples: (a) at +300 GPa, which is below the 
melt, and (b) at +800 GPa, which is in the solid–liquid coexistence region. Two-dimensional spatial-velocity fluctuations extracted from a 50 # 50 nm2 region 
of these datasets are shown in (c) and (d), respectively.

Figure 116.78
Vanadium Rayleigh–Taylor ripple-growth image taken 70 ns after the drive.
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hohlraum (7.0-mm length, 4.0-mm diam; and 2.4-mm-diam 
LEH) for the first time to create large enough planar regions 
to drive our samples in a ramp-loading configuration. We 
used the active shock breakout (ASBO) offset telescope that 
was specifically designed and commissioned to measure the 
pressure profile of samples mounted on the equator of the 
hohlraums. A schematic of our hohlraum package is shown in 
Fig. 116.80. The reservoir was a 75-nm-thick CH ablator glued 
to a 200-nm-thick 12% BrCH. An example of the resulting 
velocity interferometer for any reflector (VISAR) image from 
this hohlraum is shown in Fig. 116.81. Our measurements 
showed that the planarity in the measured data yielded resolu-
tion better than 150 ps across the entire 1-mm field of view. The 
peak radiation temperature (Tr) of 130 eV, measured by Dante, 
agreed well with the simulations. We also observed, however, 
unexpected second and third pressure rises and a late-time 
stagnation shock, as shown by the dashed–dotted curves in 
Fig. 116.82. Since our RT strength experiment requires tak-
ing radiographs at late times (>50 ns), these additional pres-
sure waves and shock will cause undesirable increases in the 
growth factors. Our current understanding of these additional 
pressure rises is that they are caused by late-time hohlraum 
radiation, after the laser turns off. The experiments suggest that 
this late-time radiation (Tr) in the “tail” of the drive is +15 eV 
higher than predicted by LASNEX.20 This causes additional 
late-time ablation pressure, which recompresses the package 

Figure 116.80
A schematic of a quasi-isentropic drive target package mounted on a 
scale-2.5 hohlraum.
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Figure 116.79
Experimental results (solid squares) of the vanadium ripple-growth factor ver-
sus the predictions from three different strength models. All models required 
changes to parameters to fit the data. Experiments at different pressure or strain 
rates will make it possible to distinguish the differences between the models.
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Figure 116.81
A VISAR image of the hohlraum-driven quasi-isentropic drive. The planarity 
yields resolution better than 150 ps across the 1-mm field of view.

and launches additional pressure waves. The strong, late-time 
shock indicated by the “up” arrows is thought to occur because 
the ablated plasma from the ablator is flowing into a confined 
volume (the hohlraum), which fills up with plasma and exerts a 
back pressure, as opposed to flowing into an infinite vacuum, as 
modeled by LASNEX (solid curve in Fig. 116.82). This is called 
the stagnation shock. We artificially modified the simulated Tr 
profile so that it preserved the peak Tr, but increased the late-
time Tr profile; the drive profile was roughly reproduced from 
this experiment.
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We also tested a reservoir comprised of layers of high-
density (1.98 g/cm3 12% BrCH) to low-density (1.41 g/cm3 4.3% 
BrCH) brominated plastic to test if hydrodynamic instabilities 
at the interfaces in the reservoir caused an unacceptable spa-
tially nonuniform drive. The VISAR results showed that there 
is no spatial nonuniformity from these layers. We also tested 
quartz as a possible reservoir material. To reach very high 
pressure (>10 Mb), a high-density, high-sound-speed material 
will be needed as a part of the reservoir. These experiments 
will need to be performed on the NIF, where a high enough 
temperature can be achieved to generate the required plasma 
drive on release.

We studied a 500-mg/cm3 foam layer that will be a part 
of the reservoir for the 5-Mb Ta strength experiment on the 
NIF. The low-density foam layers will make it possible for 
smoother loading of the initial ramp profile, thus mitigat-
ing the initial shock that may cause the sample to melt. It 
was demonstrated that the 500-mg/cm3 CRF foam properly 
released into vacuum and did not display any spatial nonuni-
formity. The shock-breakout times from the foam, the release 
temperature, and arrival time across the gap matched the 
LASNEX predictions well.

In FY09, drive development will be continued using 
thin-walled hohlraums designed to lower the late-time Tr 
(Ref. 21). There are plans to perform Ta RT experiments using 
OMEGA EP’s >20-keV backlighter capability.

Non-LTE	Implosions:  The goal of the nonlocal thermo-
dynamic equilibrium (NLTE) campaign is to build a platform to 
study energy balance in implosions by measuring ion, electron, 
and radiation temperatures as a function of high-Z dopant con-
centration. In FY08 experiments, 60 beams of OMEGA were 
used for direct-drive implosions of thin (4-nm) glass capsules 
filled with 10 atm D3He gas and 0.005 atm Kr gas as a spec-
troscopic tracer. The relative concentration of DD and 3He was 
varied during the shots, and some capsules also contained as 
much as +0.1 atm Xe. As a time-resolved electron-temperature 
(Te ) diagnostic, we fielded a mica conical crystal spectrometer 
coupled to a streak camera and viewed K-shell emission lines 
from the Kr dopant (see Fig. 116.83). Time-integrated spectra 
were also recorded with the HENEX spectrometer developed 
by NIST/NRL. We also fielded the direct-drive multispectral 
imager (DDMMI) to obtain 2-D images in the light of Li-like 
Kr lines. An increase in the DD/DT yield ratio with increasing 
DD concentration was observed, as well as an increase in the 
ion temperature, inferred from proton and neutron emission-
time histories and spectra. The continuum emission spectra 
recorded from HENEX have been used to infer the time-
integrated electron temperatures, which show a temperature 
decrease with an increase of dopant concentration. We used 
the time-resolved spectra from the conical crystal spectrom-
eter to study the temporal evolution of the Kr He-b lines. The 
He-b2/He-b1 line ratio shows a peak in the central 50 ps of 
the Kr emission. Data analysis and comparison to simulations 

Figure 116.83
Typical time-resolved spectrum from the mica conical crystal spectrometer, 
for a capsule without Xe dopant.
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is ongoing. For the next campaigns, we are building a Johann 
spectrometer, which will use the Doppler broadening of x-ray 
lines for measuring ion temperature (Ti), and a new multimono-
chromatic imager (MMI) designed for narrowband imaging in 
the 8- to 15-keV spectral region.

Long-Duration	Backlighters:  The long-duration back-
lighter campaign successfully demonstrated a pinhole-aper-
tured point-projection backlighter lasting for 8 ns at both the 
Ni He-a-line energy (7.9 keV) and the Zn He-a-line energy 
(8.9 keV) (Ref. 22). Experiments on OMEGA used 20 beams 
with 1-ns square pulse shapes from P7, with individual beams 
delayed such that the laser intensity on target was 2.6 to 2.9 # 
1015 W/cm2 for 7 ns, and 1.6 # 1015 W/cm2 for an additional 
1 ns. Beams irradiated either a zinc or nickel microdot, 
mounted on a 400-nm-thick high-density carbon substrate, 
centered over a 20-nm-diam pinhole or a 20-nm # 200-nm 
slot aperture in a 75-nm-thick tantalum substrate, with the 
target normal along the P6–P7 axis. The resulting x rays 
imaged a gold grid or wire array at 20# magnification on either 
a framing camera or streak camera in TIM-4. Diagnostics 
also monitored the emission spot, x-ray conversion efficiency, 
backscatter, and hard x-ray production.

Resolution studies on both gated and streaked diagnostics 
confirmed little-to-no pinhole closure over 8 ns for the nominal 
target and beam setup, which fired outer-cone beams first. Rear-
ranging beams such that inner-cone beams fired first gave better 
conversion to x rays, which may have caused the pinhole to close 

faster, but gave a dimmer overall signal late in time, resulting 
in dim images that could not be analyzed for source resolution. 
Early-time results on those shots showed very little pinhole 
closure. Figure 116.84 shows a streaked image of a wire array, 
illuminated with a nickel microdot emitter with a slot-apertured 
backlighter over 8 ns, and a lineout in time of the signal. Notice 
the signal varies some as beams turn on and off over the 8 ns. 
The laser intensity on target is relatively constant over the image, 
but beams closer to normal to the target’s surface convert better 
to x rays. This can be seen by comparing the signal level early 
in time in the image, when 58° beams were on, to late times in 
the image, when the 21° beams fired.

Additionally, gated tests were done to purposefully cause 
quick pinhole closure, to match LASNEX models of closure 
time. The standoff distance between the microdot emitter and 
the pinhole was reduced to 250 nm, which was irradiated with 
a 3 # 1015-W/cm2 laser source for 5 ns by 21° and 42° beams. 
Resolution of grid wires and change in signal level through the 
pinhole show that the pinhole was closed to a 7!2-nm-diam 
source in 2.25 ns.

X-Ray-Source	Applications:  Bright, tunable x-ray sources 
are necessary for radiography applications, radiation-effects 
experiments, and as backlighters for high-energy-density 
experiments. LLNL’s x-ray-source development campaign 
had one full day of shots during which three varieties of 
a multi-keV x-ray source were shot.23 The x rays from the 
laser targets were characterized as a function of different 
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A streaked image of a wire array, illuminated with a slot-apertured backlighter over 8 ns with a nickel microdot emitter, and a lineout in time of the signal.
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target geometries and volumes. Previous campaigns stud-
ied target yield as a function of laser intensity and target-
plasma density. The x-ray sources were created by driving 
(using 20 kJ of laser energy) either ultralow-density (3- to  
4-mg/cm3) Ge-doped (20% atm) SiO2 aerogels or Ge-foil-
lined epoxy (CHNO) cavities. The laser-to-x-ray conversion 
efficiency in the 10- to 13-keV x-ray band was measured to be 
between 0.6% and 1.0% and in the 1.0- to 3.5-keV band between 
35% and 40%. These shots compared output from aerogel 
targets that differed by 40% in volume and saw no difference 
in the measured x-ray yields. X-ray spectra and time-resolved 
images of the three types of targets are shown in Fig. 116.85. 
Analysis indicated that the laser-heated volume was the same 
in both targets, which resulted in the same number of emitting 
ions in the plasma. Similarly, and surprisingly, the foil-lined 
cavities produced measured yields, in all spectral bands, that 
did not differ from those of the aerogel targets. The measured 
yield for the foil-lined cavity target was consistent with trends 
observed with previous cavity targets, shot in 2007 by Commis-
sariat à l’Énergie Atomique (CEA) researchers, that produced 
higher yields and had a better-optimized laser configuration. 
These experiments were conducted jointly with U.K.’s Atomic 
Weapons Establishment (AWE) Laboratory, Sandia National 
Laboratories, France’s CEA, and the Department of Defense’s 
(DoD) Missile Defense Agency and Defense Threat Reduction 
Agency. The x rays from these targets were applied to various 
test objects and the response was measured.

Dynamic	Hohlraums:  Earlier experiments showed that laser-
driven dynamic hohlraums (LDDH’s) emit very bright, spectrally 
smooth bursts of x rays up to 3.5 keV, suitable as broadband back-
lighters for absorption spectroscopy experiments (Fig. 116.86). 
These experiments also demonstrated that LDDH’s are robust 
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(a) Time-integrated x-ray pinhole-camera 
images, filtered for x rays above 3 keV, of the 
large and small aerogel targets shot on the x-ray 
source development day (8 May). (b) X-ray 
spectra reconstructed from data measured with 
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Figure 116.86
Concept of “dynamic hohlraum”: shock-heated Xe gas forms a spherically 
converging shell that traps radiation inside. When the shell stagnates, radia-
tion is released in a bright x-ray flash suitable as a backlighting source for 
opacity experiments. Data obtained of the converging dynamic hohlraum 
included x-ray streaked images of the self-emitted x rays, multiple x-ray 
images, and spectral data.
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to the polar (nonspherically symmetric) laser configuration that 
will be used on the NIF as a continuum source backlighter. Dur-
ing FY08, these two aspects of LDDH’s were combined in an 
experiment where a Xe-filled LDDH without an inner shell was 
driven by laser beams in a polar configuration and was used as a 
backlighter for absorption spectroscopy of heated Fe samples.24 
It was found that the LDDH emits a strong, 200-ps-long x-ray 
flash that is spectrally smooth from 4.5 keV to +9 keV, enabling 
a significant expansion of the spectral range for future OMEGA 
and NIF opacity experiments. This year’s LDDH experiments 
also completed a series of shots where capsules were filled with 
neopentane rather than xenon. These shots were experimentally 
difficult as the gaseous neopentane was near its boiling point 
just prior to the experiment and condensation had to be avoided. 
The successful completion of the experiment made it possible to 
measure the difference in yield and fuel density caused by the 
hohlraum effect (which is present in “standard” xenon-filled 
LDDH’s but not in neopentane).

High-Speed	Jets:  The evolution of high-speed jets is an 
important benchmark for hydrodynamic simulations, e.g., 
the shape of the front of a jet penetrating into a surrounding 
medium can be either flat-topped or arrow-shaped, and this must 
be correctly predicted by simulations. An OMEGA experiment 
yielded a dramatic increase in the current data set of high-speed-
jet images; the evolution of the jet was followed temporally 
+2 to 2.5# longer than in previous experiments on OMEGA 
and in the NIF Early Light campaigns (see Fig. 116.87). A 
preliminary result from the experiment is the need to model 
foam material as two fluids in numerical simulations. A new 

two-fluid model for foams is currently under development at 
LLNL. In the new model, foam is treated both with LEOS (used 
for undisturbed foam) tables and with an ideal gas (used for 
foam that has been  “reflected” by the shock, i.e., cast out ahead 
of the shock by shock–foam interaction forces).

Enhanced	Efficiency	Hohlraums:  The hohlraum develop-
ment campaign investigated the behavior of gold-foam–walled 
halfraums (t = 400 mg/cm3), comparing the flux levels and 
temperature to solid-gold halfraums.25 The layout of the foam-
walled halfraum is shown in Fig. 116.88. By optimizing the wall 
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Figure 116.87
X-ray radiograph of an aluminum jet driven into a 0.1-g/cm3 carbon foam. 
The image is taken 35 ns after the start of the experiment, and the jet has 
evolved +2# longer than in previous experiments of this type. The jet structure 
is clearly visible, as is the location and shape of the bow shock.
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density for these hohlraums at temperatures near 200 eV, we 
expected to see an increase in flux by +15%. These shots posi-
tioned the targets on the Dante axis and used 15 beams from the 
H16 direction, with the RR1001 reverse-ramp pulse shape and 
IDI-300 phase plates. Beams hit a 1200-nm-diam gold-coated 
solid surface near the 800-nm LEH on the foam targets, which 
hid the laser spots from the Dante view. The inner foam or solid 
surface was 1200 nm in diameter and 1200 nm in length. Dante 
measured flux while a soft x-ray camera in TIM-6 monitored 
the LEH. Over three shots, two solid targets were compared to 
one foam target. These shots showed a lower flux in the foam 
target than in the solid targets, contrary to our predictions [see 
Fig. 116.88(b)]. We are investigating whether the reverse-ramp 
pulse shape was the appropriate choice. Remaining targets will 
be used for future tests.

Opacity:  In FY08, LLNL completed the development of 
a high-temperature laser-opacity platform. Thin-foil samples 
of co-mixed sodium chloride and titanium, tamped by plastic 
on all sides, were placed inside hohlraums, and heated to 
temperatures well above 100 eV in local thermodynamic equi-
librium, or LTE, conditions. The samples were then backlit 
by two different broadband radiation sources. Separate shots 
used samples of co-mixed tantalum and titanium. The data in 
Fig. 116.89 show an edge-on view of the sample, backlit by 
a ten-beam Kr-filled dynamic hohlraum capsule backlighter, 
which was apertured down to 30 nm in one direction to 
improve the spatial resolution. The data are spectrally resolved 
in the horizontal direction using an MSPEC elliptical crystal 
spectrometer and a gated microchannel-plate detector. This 
was the first-ever laboratory measurement of a hot sample in 
the photon energy range above 4 keV. The expansion of the 
sample was consistent with pre-shot LASNEX simulations 
and established the sample density. The spectrum was well 
fit by the VISTA opacity code, using the known optical path 
length and measured density, at a temperature of 110!5 eV. 
Separate, nearly synchronous measurements were obtained 
in a 250- to 1600-eV spectral band using a variable-spaced 
grating spectrometer and a second backlighter. The latter 
data, including both absorption and self-emission spectra from 
the hot sample, provide detailed information on the sample’s 
opacity in the spectral band contributing to the Rosseland 
mean opacity, which, in turn, controls the overall radiation 
flow through such a plasma. By simultaneously character-
izing the sample’s density, temperature, ionization balance, 
and Rosseland-band opacity, this new experimental platform 
makes possible detailed, photon-energy-specific investigations 
of the process of radiation transport in the hot plasmas found 
deep inside the sun and other stars. 

FY08 LANL OMEGA Experimental Programs
During FY08 Los Alamos National Laboratory (LANL) 

successfully fielded a range of experiments on OMEGA to 
study the physics relevant to inertial confinement fusion (ICF) 
and high-energy-density laboratory plasmas (HEDLP) in 
support of the national program. LANL conducted a total of 
85 target shots on OMEGA. Collaborations with LLNL, LLE, 
MIT, and AWE remain an important component of LANL’s 
program on OMEGA. 

AGEX-EOS:  The AGEX-EOS-09 campaign studies the 
role that radiative preheating plays in the Richtmyer–Meshkov 
mixing of a large-Atwood-number interface. The experiment 
uses a variant of the off-Hugoniot platform to produce a heated 
interface that is subsequently shocked. The resulting interface 
evolution is imaged radiographically. 

The new platform, first tested in September 2008, employs 
an independently controlled shock and heating drive as well as 
a point-aperture pinhole backlighter configuration. The primary 
objectives for the September campaign were to exercise this new 
platform under every permutation of drive, identify sources of 
noise, and demonstrate the imaging viability of the experiment. 

Figure 116.90 shows the target geometry and preliminary 
data obtained from shot 52215. The data clearly show the posi-

Figure 116.89
Gated space-resolved titanium absorption spectrum for photon energies 
around 5 keV. The horizontal bar is a gap between two strips on the detector. 
To the left are n = 1 to 2 absorption lines of F-like to C-like Ti. To the right 
are n = 1 to 3 lines of the same ions. The spatial expansion of the sample is 
determined by the vertical extent of the lines.
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tion of the heated and shocked Teflon interface as well as the 
positions of the main and preheat-side shocks at 25 ns. Drawing 
from the success of September’s experiment, a number of imag-
ing improvements have been initiated, giving us high confidence 
for the physics experiments planned in February 2009.
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Figure 116.90
Overview of the (a) AGEX-EOS-09 target and the preliminary data from 
(b) shot 52215.

DTRat:  In August 2008, LANL continued the DT	Ratio-
3He	Addition campaign, imploding glass capsules filled with 
DT/3He using a 600-ps square laser pulse. Previous studies have 
looked at the effect of adding 3He to the D2-filled capsules (as a 

DT surrogate); this study is the first to look at the effect on DT. 
The use of DT also makes it possible to acquire high-quality 
reaction histories derived from the Gas Cherenkov Detector 
(GCD-1). From these reaction histories, it has been determined 
that the addition of 3He degrades the compression component 
of yield more than expected. This is consistent with the con-
clusions of the study conducted by MIT using filled-D He2

3

plastic capsules26 and LANL’s Hi-Z campaign utilizing glass 
capsules, also filled with D He2

3  (Ref. 27). Contrary to the 
MIT study, however, the shock component does not appear to 
be significantly affected. 

Figure 116.91 shows the reaction histories for three concen-
trations of 3He addition. Overall, the measured neutron yield 
is +37% of a clean calculation for each 3He concentration. 
However, when the histories are decomposed into Gaussian 
components representative of shock and compression yields, the 
measured compression component goes from being a factor of 
3 lower than calculated at 0% 3He, to being a factor of 5 lower 
at 36% 3He. This agrees well with the MIT study as seen in 
Fig. 116.92 (the factor of 3 at 0% 3He is normalized out for the 
DTRat data set, whereas a factor of +2.2 is normalized out for 
the “Rygg” data set). In contrast, the decomposed shock com-
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ponent from DTRat agrees quite well with the clean calculation 
for all three 3He concentrations as shown in Fig. 116.93.

Shock-yield data for the 24-nm-wall-thickness capsules 
from MIT’s “Rygg” study exhibit a parabolic dependence on 
3He fraction, with the minimum occurring near 50% 3He, 

similar to what was observed for the compression component. 
The data set for 20-nm-thick walls, however, does not appear 
to support this trend. We suspect the degraded yield anomaly 
arises only after the shock has reflected from the center and 
has hit the incoming shell. After such time, the shock yield 
is diminishing while the compression yield is rising. X-ray 
imaging and tR data from DTRat, Hi-Z, and the MIT study 
support the hypothesis that capsules with +50% 3He are not as 
compressed at the time of peak neutron production rate dur-
ing the compression phase as those without 3He (or those with 
nearly pure 3He from the MIT study). It is not understood at 
this time what is degrading the compression.

High-Z:  The High-Z project successfully completed its 
planned experiments for FY08 at the OMEGA Laser Facility. 
These experiments investigated what effect the addition of He 
to ICF implosions has on fusion yield. The experiment used the 
standard glass-shell targets we have used in the past and varied 
the concentration of 3He in the target and measured the resulting 
yield. These were done for three different concentrations of 3He: 
0%, 10%, and 50% by atomic fraction. The gas fills were also 
designed to be hydrodynamically equivalent to try to ensure 
similar hydrodynamic behavior. In addition, we also planned 
to measure the change in yield for two different laser pulse 
lengths. We first used our standard pulse length of 1.0 ns and 
then conducted a second series of experiments using a shorter 
pulse length of 0.6 ns. The shorter pulse length should empha-
size the differences in the compression component of the yield 
where we believe the 3He is causing a significant impact. 

On 23 April 2008, we successfully fired eight shots on 
OMEGA with 1-ns laser pulses and varied the concentration 
of He in the capsules. The neutron-yield results from these 
experiments are shown in Fig. 116.94, along with the expected 
degradation caused by less deuterium in the target. One can 
see in the figure that the observed yield does fall below the 
expected yield as the He is increased. We also see little dif-
ference in the ion temperature for these shots, which varies 
from 6.9 keV to 7.4 keV and increases only slightly as the He 
concentration is increased.

We also did two additional shots on 23 April with 4.0-nm-
thick glass shells. These targets contained 50% atom fraction 
of He, but one was 4He instead of the usual 3He. The yields 
for these two shots were 4.8 # 10 and 4.3 # 10, respectively—a 
difference of 10%, which is similar to our standard shot-
to-shot variation. The ion temperature for these shots was 
higher, +8.2 keV, consistent with thinner glass and a more 
rapid implosion.
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Figure 116.92
Scaled compression component of neutron yield normalized to 1 at 0% 3He.

Figure 116.93
Scaled shock component of neutron yield normalized to 1 at 50% 3He for 
“Rygg” data; no normalization for DTRat data.
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Figure 116.94
Neutron yield as a function of He atom fraction in the gas. The dots are data 
for a 1-ns pulse drive with 4.3-nm-thick walls and the curve represents the 
expected yield based on the deuterium concentration only.

Four additional shots were conducted on a separate half-day, 
17 June; the results from those shots are shown in Fig. 116.95. 
The behavior is similar to what was observed for the 1-ns 
drive shots with one exception: the ion temperatures for these 
experiments varied greatly, from 5.3 keV for no He to 7.8 keV 
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Figure 116.95
Neutron yield as a function of helium atom fraction in the gas. These experi-
ments used 0.6-ns laser drive and the data are shown as dots. The curve rep-
resents the expected yield based on the deuterium concentration.

for 50% He and bring into question whether the implosions are 
hydrodynamically equivalent. This would be consistent with 
an even greater degradation of the compression burn, reduc-
ing its importance compared to the shock burn and effectively 
elevating the average burn temperature.

Overall, the results for doping the gas with 3He were 
consistent with earlier results for Ar, Kr, and Xe, although a 
much larger atom fraction of 3He was required to produce a 
similar effect. 

NIF	Platform	#5:  The NIF Platform #5 campaign continued 
experiments to develop diagnostic techniques for future NIF 
experiments. The FY08 experiments focused on backlighter 
source characterization and development as well as the suc-
cessful execution of a new platform for the observation of 
absorption features due to heated materials. 

One aspect of the backlighters that was examined was the 
conversion efficiency for L-shell and M-shell emitters. Over 
the course of the FY08 campaign, the studied laser irradiance 
varied from 1014 W/cm2 up to nearly 1017 W/cm2. The data 
obtained will assist in evaluating the expected photon fluxes 
at the NIF. An example of some of the data obtained from a 
CsI backlighter is shown in Fig. 116.96.

The platform for studying absorption spectroscopy is shown 
in Fig. 116.97. A Ti foil was heated inside a hohlraum. A CsI 
backlighter provided a quasi-continuum spectrum source, 
which passed through the sample and was recorded on by a 
spectrometer (Fig. 116.98). The recorded spectrum contains 
both the emission from the CsI backlighter and the absorp-
tion from the heated Ti foil. Although detailed analysis is 
still underway, these experiments provided valuable informa-
tion on the absorption spectroscopy technique and have led 
to a number of improvements being implemented for future 
NIF experiments.

Symergy:  We have used two cones of the OMEGA laser to 
irradiate a linear 0.7-scale NIF hohlraum to implode Be and CH 
capsules to measure the effect of beam phasing on the implosion 
symmetry. The vacuum hohlraums, with 2-mm-diam capsules, 
reached 105 eV using 1-ns laser pulses. The symmetry of the 
x-ray emission from the implosion was measured for both the 
CH and Be capsules. We were able to vary the symmetry at 
implosion time by varying the cone fraction or ratio of energy 
between the inner cones (21° or 42°) and the outer cone (59° 
beams) (Fig. 116.99). We found that the fraction where the best 
symmetry occurred was closest to those ratios that the re-emit 
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Figure 116.97
Schematic depicting the absorption spectroscopy 
configuration. Laser beams enter both sides of the 
hohlraum. A thin Ti foil sitting in the center of the 
hohlraum is then heated. The backlighter provides 
a quasi-continuum backlighter source, and its 
x rays pass through the Ti sample and are reflected 
off the Bragg crystal and recorded on film. Some 
of the backlighter emission is absorbed, depend-
ing on the temperature and density of the Ti. This 
schematic is not to scale.
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Figure 116.98
Spectrum containing the emission from a CsI backlighter and 
the absorption due to a thin, heated Ti foil.
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technique had found for the same pointing. When we replaced 
the 42° beams with the 21° beams and pointed to the same 
location in the hohlraum with the same laser irradiance, the 
hohlraum radiation was lower and the symmetry was affected, 
indicating some impaired propagation of the inner cone.

FY08 CEA OMEGA Experimental Programs
CEA conducted 39 target shots on the OMEGA Laser Facil-

ity in FY08. The CEA efforts included the following:

CEA	Acquisition	System	and	Software	Developments	for	
the	OMEGA	Facility:  Since 1999 the development of specific 
CEA diagnostics for joint experiments with LLE, LANL, and 
LLNL on the OMEGA facility (for instance, DMX,28 NIS,29 or 
HRXI30) have used the same devices (single-shot oscilloscopes, 
CCD, HV supply, switches, fast triggering generators, electrical 
attenuators, etc.) to supply and record detectors placed inside 
the target chamber area. All these recording and control devices 
are quite sensitive to the radiative environment generated 
during the OMEGA high-yield neutron shots (Yn > 1013 n/4r) 
induced mainly by the hard x-ray components for every shot or 
the neutron and gamma ray flux for high-neutron-yield shots.31 
To protect these sensitive instruments, we decided to place them 
in a “quieter” radiative environment named “La Cave,” located 
in the basement of the target chamber area and protected by 
70 cm of concrete. Figure 116.100 shows FPE (Force de Pro-
jection d’Enregistrement)—the recording system installed in 
La Cave that presently includes

•	 fourteen	high-bandwidth	single-shot	oscilloscopes	
(IN 7100 – 7 GHz)

•	 two	digital	oscilloscopes	(TEKTRONIX	
TDS694 – 3 GHz)

•	 some	HV	supplies	(used	for	biasing	our	detectors)	and	a	
related voltmeter

•	 a	control	system	for	our	DMX	high-bandwidth	remotely	
controlled electrical attenuators
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•	 a	fast	triggering	system	(not	shown	at	the	rear	side	of	
these cabinets)

•	 an	automated	control/command	system

The CEA FPE control/command system, described in detail 
in the next paragraph, is based on PC hardware and is spe-
cially designed to automatically control our devices during 
the shot sequence when access to La Cave is closed for safety 
reasons. During that time (from 10 min prior to the shot to 
a few minutes after, depending on the radiative decay), each 
specific “order” generated during the OMEGA countdown 
process (during the capacitor bank charge), from a few min-
utes before until a few seconds after the shot, is recognized 
and used to automatically trigger some specific action on each 
device remotely controlled by the software (HV on, oscillo-
scope or CCD armed, data transfer and storage process, HV 
off, etc.). These actions can also be manually triggered by an 
operator if needed during the setup and preparation of the 
diagnostic. This system can be also be seen (for controlling 
its correct automated operation during the shot sequence) by 
the OMEGA experimental team operators when the relevant 
diagnostic is included as a “facility diagnostic” (as done, for 
example, for DMX).

“FPE-SIGMA” Command/Control System.  Most of the 
deployment and tuning of the measurement chains of each CEA 
diagnostic is done by a “mobile” team (present at the OMEGA 
facility only during main CEA experiments) that uses a specific 
tool to manage the acquisition devices and their controlling 
network of computers.

Developed and improved over a decade, the “SIGMA” soft-
ware tool solves computing issues going from manual to fully 
automated experiments. A distributed architecture—which 
also downsizes to fit into a single computer—is controlled 
at one place by human interface. The tool supports the diag-
nostic design and improvement process by making it possible 
to describe the system in a smart graphical interface (the 
Microsoft Visio diagram editor is shown in Fig. 116.101). The 
targets, filters, and mirrors (the main components of DMX) 
appear at the left side of a schematic view in which the signal 
paths and delays also appear and can be documented. Thus 
the settings definition of each remote-controllable device is 
postponed after the definition of its use case. In fact, in an 
automated diagnostic, settings are sets of logical data that are 
selectively recalled into a static physical layer. The versatility 
of a physical layer increases with the remote controllability of 
its key components.

The underlying and hidden computing technologies include

•	 specific	support	of	a	few	device	drivers	(GPIB	controller,	
ISA/PCI imaging cards, USB devices)

•	 standard	communication	with	serial	ports,	GPIB	ports,	TCP/
IP connections, and ODBC databases

In addition, the complexity of some instrumental subsystems—
e.g., based on more than one device connected to different 
ports, leading to advanced communication handshake or to 
advanced commands implementation—was hidden in high-
level virtual device drivers that run on the device computers 
and expose a GPIB-like interface.

The supported classes of instruments come with a visual sche-
matic footprint, an inline OCX front panel, a guarded OCX set-
tings form, and a set of intrinsic commands provided by design. 
Intrinsic commands may generate specific event types that also 
come with their suite of in-situ viewers and commands.

Currently, the SIGMA software controls analog and digital 
oscilloscopes, power supplies, programmable attenuator banks, 
and neutronic imaging subsystems. At design time, the Visio 
multipage editor is fully automated to show the instrument 
settings according to the active configuration. At run time, the 
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Figure 116.101
The diagnostic editor built over Microsoft Visio.
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configuration variable is also maintained and its value can be 
automatically affected in order to influence the conduct of oper-
ations. For example, the active configuration can be retrieved 
from a database each time a shot number is received.

Ten configurations are currently supported, each being 
freely labeled. At the instrument level, four sets of settings are 
freely associated to the ten configurations. Settings factoriza-
tion across configurations simplifies diagnostic management. 
At the diagnostic level, a matrix determines the physical subsets 
(measurement chain) that are active with each configuration.

An experiment can be controlled manually, in a semi-
automatic manner (triggering scripted sequences), or fully 
automatic [involving the internal scheduler or listening to a 
hierarchical uplink (supervisor)]. Supervisors can also be noti-
fied when selected error levels occur.

During a run time, the software builds a single chronology 
of time-stamped and typed events. Each event type shows a 
specific icon and comes with a set of tools that makes possible 

inspection (texts, forms, curves, or pictures), event navigation, 
or procedure recall. Past-event inspection is possible at any 
time, as well as single command executions, script execu-
tions, and inspection/modification of instrument settings. The 
guarded variables cover every aspect of the system except the 
state of the user interface.

Recently, the SIGMA tool was qualified to be integrated 
into the OMEGA operations as the DMX diagnostic applica-
tion controller. To make the startup and the stopdown of the 
diagnostic application easier, the tool was given a simplified 
alternate interface showing a strictly filtered set of notifications 
(Fig. 116.102). In addition, the non-specialist is guided from 
the first power up to the last shutdown thanks to a localized 
operator sheet (Fig. 116.103) and to the firing of some interac-
tive checklists. In the meantime, the software monitors the 
presence of each component.

The SIGMA software developed and tested initially for 
OMEGA common experiments is also deployed at the LULI facil-
ity (Palaiseau, France) and the LIL facility (Cesta, France); CEA 
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Figure 116.102
The complete versus the simplified run-time 
human interface.
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Figure 116.103
An operator sheet to properly start the minimum hardware and launch 
the checklist.
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also uses it on its Gekko XII diagnostic (Osaka, Japan), justifying 
its given name of FPE for “Projected Force for Recording.”

Monocrystalline	CVD	Diamond	Detector:	A	Novel	Tool	for	
Neutron	Yield	and	Duration	Emission	Measurement:  Syn-
thetic diamond detectors are now known to exhibit attractive 
characteristics to discriminate neutrons by the time-of-flight 
technique (nTOF), as well as to measure neutron bang time 
and ion temperature. Earlier work had, however, demonstrated 
how the quality of this material matters since the temporal 
properties of synthetic diamond devices (aiming to be in the 
100-ps range) strongly differ from device to device and growth 
origins. For the record, sensitive CVD diamonds are usually 
too slow to be used for timing measurement, although such a 
development of sensitive and fast CVD diamonds would make 
it possible to perform simultaneously both neutron-yield and 
ion-temperature measurements, thus minimizing the number 
of nTOF detectors on the Laser Megajoule Facility.

More recently, and to complete the data acquired in 2007 
(Ref. 32) for low-neutron-yield measurements, a new series 
of polycrystalline CVD diamonds (Element Six) and new 
monocrystalline CVD diamonds (CEA-LIST, Saclay) were 
implemented on the OMEGA Laser Facility during implosion 
experiments of DT capsules yielding 1013 to 1014 neutrons. 
These materials exhibited higher sensitivities. The goal was 
to determine how such novel materials could be relevant for 
neutron-yield, bang-time, and ion-temperature diagnostics. 

On OMEGA, diamond detectors were inserted at distances 
of 30 cm, 1 m, and 2 m from the target chamber center using 
the TIM diagnostic insertion mechanisms. Other diamonds 
were placed outside the target chamber at 3.3 m from target 
chamber center (TCC). Distances and neutron-yield ranges 
provide the ability to probe the detectors’ performances within 
two decades of the neutron flux (n/cm2). The detectors exhibit a 
linear response over the dynamic range explored. To compare 
diamond materials, their sensitivities were normalized as a 

function of the sample volume: diamond sensitivity can often 
vary by several orders of magnitude, up to three decades previ-
ously observed. Table 116.V shows that the novel monocrystal-
line sample A260107B (from CEA-LIST) appears to be the 
most sensitive of all diamond material calibrated on OMEGA 
from the campaigns in 2007 and 2008. 

Prior to the experiments, we had evaluated the temporal 
properties of these diamonds under 16-MeV electrons produced 
on a Linac accelerator at CEA (ELSA at Bruyères-le-Châtel). 
The pulse duration on ELSA is about 25 ps, making it possible 
to measure the main timing parameters. The monocrystalline 
diamond A260107B pulse shape has a 10% to 90% rise time 
that remains below 100 ps. Such temporal properties make this 
sensitive diamond a good candidate to measure the Doppler 
broadening of the neutron pulse along its propagation, thus 
enabling one to measure the ion temperature at bang time.

On OMEGA, the detector signal must propagate through 
10 to 30 m of cable before it reaches the 7-GHz-bandwidth 
single-shot oscilloscope (IN7100). We have developed a soft-
ware processing tool that makes it possible to deconvolve the 
pulse broadening produced by such a high cable length. It led to 
processed signals exhibiting rise times of 870 ps at 3.3 m from 
TCC with an ion temperature of 6.7 keV (Fig. 116.104). This 
signal rise time observed during DT implosions results from the 
150-ps burn duration, convoluted with the temporal broadening 
induced by the DT ion’s main energy at bang time.

Using the signal-processing technique already used in 
NTD diagnostics,33 we can deduce the neutron pulse duration 
at 3.3 m from the target, which is mainly determined by the 
Doppler broadening produced by the ions. The resulting ion 
temperature and measured time duration are shown in the two 
last columns of Table 116.VI. The inferred ion temperatures 
from the CVD diamond signal are in good agreement with the 
standard OMEGA measurement performed at 5 m with a fast 
scintillator and an MCP photomultiplier and are presented for 

Table 116.V:  Diamond sensitivity measured under 14-MeV neutrons pulses.

CVD Type Thickness Size Gold Contact High Voltage
Sensitivity 
(C/n/cm3)

A260107B Monocrystalline 500 nm 4 # 4 mm 3 # 3 mm –1400 V 3.1 # 10–15

A281103 Polycrystalline 260 nm 5 # 5 mm 4 # 4 mm –360 V 1.8 # 10–15

E6 300 nm Polycrystalline 300 nm z 10 mm z 8 mm –750 V 2.4 # 10–16

E6 1 mm Polycrystalline 1000 nm z 10 mm z 8 mm –1000 V 1.3 # 10–16

A270105 Polycrystalline 115 nm 5 # 5 mm 4 # 4 mm –750 V 4.7 # 10–17

A190106 Polycrystalline 450 nm 5 # 5 mm 4 # 4 mm –500 V 4.9 # 10–18
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comparison in Table 116.VI. As predicted, monocrystalline 
CVD diamonds made by CEA-LIST (A260107B) are sensitive 
enough for neutron-yield measurements and fast enough for 
ion-temperature measurements.

Low-sensitivity diamonds are also required for neutron high-
yield measurements. A polycrystalline diamond (A190106 from 
CEA-LIST) grown using a high level of nitrogen impurity was 
tested on OMEGA; it exhibited a very low sensitivity but also a 
very long pulse tail. A “black diamond” detector (from Applied 
Diamond) exhibiting high levels of “non-carbon impurities” 
was provided by V. Yu. Glebov of LLE. These two diamond 
samples were evaluated at the ELSA facility using 16-MeV 
electrons to compare their relative sensitivities and timing 
parameters (Fig. 116.105). Comparison with other diamonds 
tested on ELSA and OMEGA shows that those black diamonds 
are probably good “low-sensitivity” detectors for high neutron-
yield measurements on MJ-class lasers.

Table 116.VI:  Ion-temperature measurement with monocrystalline CVD diamond at 3.3 m from TCC.

OMEGA Measurement CVD Diamond Measurement

Shot Ti LLE (!0.5 KeV) Dt CVD reference Ti measured Dt measured

51301 6.4 keV 992 ps A260107B 6.7 keV 1016 ps

51305 5.3 keV 903 ps A260107B 5.2 keV 893 ps

51314 3.6 keV 744 ps A260107B 3.7keV 729 ps

51315 3.7 keV 754 ps A260107B 3.6 keV 740 ps

51322 5.5 keV 919 ps A260107B 5.6 keV 926 ps

51325 5.1 keV 885 ps A260107B 5.1 keV 882 ps
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The 2008 campaigns have therefore enabled us to iden-
tify families of materials that appear suitable according to 
measurement objectives. This development of faster high- 
and low-sensitivity CVD diamond detectors is still being 
investigated with CEA-LIST and LLE. A new challenge will 
now be to demonstrate that a large, sensitive CVD diamond 
is capable of measuring the downscattered neutron yield for 
tR determination.

Neutron	Imaging	on	OMEGA:  For several years, CEA has 
obtained neutron-imaging measurements on OMEGA with 
an overall resolution of 20 nm (Refs. 29 and 34). The imaging 
system is based on a small aperture (a 2-mm-diam hole made in 
a 10-cm-thick tungsten cylinder) placed 260 mm from TCC.35 
The detector (80-mm diameter) is then set 8 m from the target. 
In this setup, aligning the aperture is very difficult due to the 
fact that any small misalignment entails a large displacement 
of the target image on the detector plane at 8 m. As shown with 
the penumbral aperture last year, there is also the influence of 
the source position inside the field of view, which is 200 nm 
for a source size of approximately 50-nm FWHM.35,36

In FY07 we presented the effects of misalignment on both 
calculated and experimental unfolded images obtained with a 
penumbral aperture. Distortions entailed on the image shape 
revealed that aperture-positioning tolerance is about 50 nm 
within the field of view to prevent any effects from misalign-
ment on unfolded images. Briefly, our alignment technique uses 
a telescope and a beam splitter to view the target through the 
aperture and the detector, thus fixing the detector–target axis. 
Next, the aperture is aligned using picomotors on this axis. 
This technique is very accurate but quite long and fastidious. 
To meet OMEGA repetition rate and shot plan requirements, 
a new technique for coarse alignment was tested this year to 
earn time for setting up before shots. For fine alignment, the 
old technique is then performed. The new technique relies on 
a laser beam being injected inside the TIM by a single-mode 
optical fiber. The laser is sent in two collinear directions via a 
semitransparent plate, one through the aperture and one to the 
detector. The first allows us to be sure that we are well centered 
both on the target and the aperture, the second on the detector. 
Such a system permits us to be ready for a shot in about 1 h, 
compared to approximately 2.5 h in the past. We have thus 
obtained a usable image well centered on the detector on the 
first shot (51295, see Fig. 116.106). 

For high SNR images, we use an annular aperture (see 
Fig. 116.107) to form neutron images.34 This aperture is made 
with a biconical plug inserted in the penumbral aperture, but, 

Figure 116.106
Image of DT implosion (shot 51295) yielding 4.0 # 1012 neutrons. (a) Raw 
image and (b) unfolded image using autocorrelation method37 (SNR = 17).
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in this case, there is no opportunity to send the laser through 
the aperture. Alignment precision then relies on the capabil-
ity of reproducing two identical penumbral apertures that can 
be replaced with minimal misalignment. Aperture position-
ing tolerance and repeatability between these two apertures 
were quantified in our laboratory and verified during several 
campaigns on OMEGA. As for the penumbral aperture, this 
year (FY08) we studied image distortion as varying annular 
aperture alignment on OMEGA experiments. These results 
were compared to Monte Carlo calculations (Geant4)38 and 
showed relatively good agreement with experimental results 
(see Fig. 116.108). 

The oblate shape of Fig. 116.106(b) reveals that the aperture 
is not perfectly aligned; this image was +200 nm off center. 
This misalignment was due to the TIM insertion/reinsertion 
cycle before the shot for adding tritium protection. Alignment 
control is impossible after tritium coverage addition. It was 
found that feedback springs on picomotors were not strong 
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enough to recover the right position during insertion vibrations. 
Alignment technique was not responsible for this error. 

The capability of being well aligned on a first shot is a cru-
cial point for megajoule-class lasers with a 40-m line of sight. 
Misalignment contributors are now well known and can be 
reduced under acceptable values less than 50 nm. We are cur-
rently qualifying a 150-mm-diam camera for high-resolution 
measurements (down to 10 nm) that next year will be placed 
at 13 m from target.

FY08 AWE OMEGA Experimental Programs
Thirty-two target shots were taken for AWE-led experi-

ments on OMEGA in FY08. Hohlraum symmetry was one of 
the principal topics of investigation.

Coupling laser energy into a hohlraum is a long-established 
method for generating a symmetric x-ray drive for high-
convergence implosions. A number of studies of hohlraum 
symmetry have been undertaken to optimize the conditions 
for inertial confinement fusion;39,40 therefore our codes are 
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relatively well validated in this regime. In certain situations, 
it is necessary to perturb the symmetry of the driver, for 
example, where beams are required for diagnostic purposes. 
To validate our simulations in such conditions, AWE has 
commenced a campaign to study the energetics of asym-
metric hohlraums.

A laser-heated hohlraum was used (Fig. 116.109) and driven 
either from both ends (“symmetric drive”) or from only one end 
(“asymmetric drive”). The OMEGA Dante diagnostic is used 
to measure temporal evolution of the radiation temperature. A 
capsule located at the center of the hohlraum is used as a diag-
nostic of the flux uniformity radiographed with a titanium area 
backlighter. Two classes of capsules with a nominal diameter 
of 600 nm were fielded on the first shot day (September 2008). 
A silicon aerogel sphere (t + 325 mg/cc) makes it possible to 
characterize the time-dependent drive as a function of angle via 
the steep x-ray transmission gradient just outside the converg-
ing ablation front. A plastic-coated, thin-shelled glass capsule 
provides a complementary measure of the angular variation 
in absorbed flux. The outer plastic layer serves to mitigate the 
backlighter attenuation from the ablated material, while the 

glass shell provides an opaque tracer layer for the radiography. 
For some targets a thin gold layer was applied over the diag-
nostic holes to maximize the albedo and reduce any azimuthal 
variation in the dynamics. 

Figure 116.110 illustrates the late-time implosion dynam-
ics of a thin-shell glass capsule driven from one side and 
synthetic radiographs produced from AWE’s NYM radiation 
hydrocode. The experimental data indicate that the ablation is 
preferentially directed toward the laser spots, with a slightly 
reduced drive on axis adjacent to the laser entrance hole. This 
results in an inwardly propagating shock that converges on 
axis, driving a collimated jet ahead of the main shock front. 
The preliminary calculations of these targets qualitatively 
reproduce the macroscopic evolution of the implosion but 
overestimate the velocity of the shell. The radiographic 
images of the aerogel spheres show a clear departure from 
sphericity (Fig. 116.111). Contours of the backlighter transmis-
sion, coupled with the original location of the sphere, make a 
Legendre polynomial fit to the data possible. This indicates a 
significant P1 mode resulting from the imposed drive imbal-
ance within the hohlraum. 
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Figure 116.109
Schematic of the experiment to investigate the per-
formance of an asymmetrically driven hohlraum. 
The 600-nm-diam spherical capsule is placed 
at the center of a 1.6-mm-diam hohlraum target 
that is heated through both laser entrance holes 
(symmetric-drive case) or through just one laser 
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graphic measurements of the implosion are made 
using a titanium area backlighter and a four-strip 
x-ray framing camera.
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