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Introduction
Rayleigh–Taylor (RT)1,2 instability is of critical importance in 
inertial confinement fusion (ICF)3 and astrophysics.4 In ICF, 
the RT instability leads to shell disruption and performance 
degradation of spherically imploding targets.3 In astrophysics, 
when a star becomes a supernova, the outer shell is pushed by 
the inner exploding core and heavy material from the inner core 
appears in the outer shell because of the RT mixing process.4 
In the linear regime of classical RT instability,3,5 small initial 
modulations grow exponentially in time with the growth rate 
c = (Akg)0.5, where k is the modulation wave number, g is the 
target acceleration, and A is the Atwood number defined as 

,A h l h l= - +t t t t_ _i i  where th and tl are the densities of 
heavy and light fluids, respectively. Most ICF-related cases 
involve ablative drive in which the growth rate c = a(kg)0.5 – 
bkVa is stabilized by the ablation term bkVa, where Va is the 
ablation velocity and a and b are constants.6,7 This growth 

Rayleigh–Taylor Growth Measurements of 3-D Modulations 
in a Nonlinear Regime

Figure 105.10
(a) Fourier spectra of target areal-density modulations driven by Rayleigh–Taylor instability, as predicted by Haan’s model.18 The dashed line is Haan’s satu-
ration level Sk = 2/Lk2 (L = 400 nm is the size of analysis box) multiplied by the calculated target density to be converted to areal density.25 (b) Bubble size 
distributions as a function of the bubble size normalized to the average bubble size m m  as predicted by 2-D (dotted curve) and 3-D (dashed curve) bubble 
competition models in a self-similar regime.27

rate is an approximation of a more exact formula in Ref. 7. 
The growth rates of linear RT instability have been measured 
in both classical5 and ablative regimes.8–12 The indication of 
nonlinearity in RT growth in real space is that the modulations 
develop into bubbles (penetration of the lighter fluid into the 
heavier) and spikes (penetration of the heavier fluid into the 
lighter).13 In Fourier space, this is equivalent to the harmonics 
generation of initial fundamental spatial modes. As the RT 
instability further progresses, the two fluids mix in turbulent 
and chaotic regimes.14–17 There are two modeling approaches 
for nonlinear RT instability: a modal one18–20 that describes 
the evolution in Fourier space and a bubble competition and 
merger that describes instability in real space.17,21–24 In Fou-
rier space, Haan’s model18 [see Fig. 105.10(a)] predicts that 
the spectral amplitudes of 3-D, broadband modulations grow 
exponentially with the RT growth rates of c(k) until they reach 
the saturation levels18,25 Sk = 2/Lk2 (L is the size of the analysis 
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box), after which they grow linearly in time with the saturation 
velocities18,26 Vs(k) = Skc(k). The short-wavelength modes grow 
initially most rapidly and quickly saturate at levels Sk while 
very long-wavelength modes grow more slowly. As a result, the 
midwavelength modes have the largest growth factors, produc-
ing a peak in the spectrum. As the evolution continues, this 
peak moves to longer wavelengths, as shown in Fig. 105.10(a). 
Haan’s model applies in the weakly nonlinear regime for broad-
band modulation amplitudes around the saturation levels.25 
In real space, bubble competition models predict that smaller 
bubbles (with smaller nonlinear velocities) are taken over 
by larger bubbles (with higher nonlinear velocities) through 
bubble competition and the bubble merger processes.17,21–24 
As a result, the average size of the modulations shifts to longer 
wavelengths as the modulations grow. The real-space models 
predict that the bubble sizes and amplitudes evolve with a 
self-similar behavior in an advanced nonlinear regime.24,27,28 
The self-similar behavior predicts that the distribution function 
f m m^ h of the bubble size normalized to the average bubble 
size m m  is constant as the modulation average size and aver-
age amplitude grow.24,27,28 Figure 105.10(b) shows self-similar 
bubble size distributions predicted by 2-D and 3-D bubble 
competition models.24,27 It should be noted here that Haan’s 
model is applicable for broadband initial spectra, which can 
contain both long and short wavelengths. The bubble competi-
tion model is mainly applicable for initial spectra dominated 
by short wavelengths, whereas long wavelengths are mainly 
produced by bubble merger processes.27 This article presents 
results of nonlinear RT experiments25,26,28,29 performed over 
several years on the OMEGA Laser System30 and shows new 
results in which planar targets were directly driven by laser 
light and 3-D broadband modulation growth was measured near 
nonlinear saturation levels. The initial broadband modulations 

were dominated by short wavelengths in these experiments; 
therefore, both real-space (bubble) and Fourier-space models 
can be used for comparison with experimental data. This article 
compares measured RT evolution with that predicted by both 
Fourier- and real-space nonlinear RT models. The experiments 
with initial broadband modulations dominated by long-wave-
lengths modes are described elsewhere.26

In this article, Experimental Configuration (p. 18) 
describes the experimental configuration and measurement 
technique. Experimental Results are discussed on p. 19 and 
Conclusions are presented on p. 24.

Experimental Configuration
In the experiments, initially smooth, 1-mm-diam CH tar-

gets with thicknesses ranging from 20 to 50 nm were driven 
with 12-ns and 3-ns square pulses at laser intensities of ~5 # 
1013 W/cm2 and ~2 # 1014 W/cm2, respectively, on the OMEGA 
Laser System.30 The modulation growth was measured with 
through-foil, x-ray radiography.29 The backlighter x rays that 
probe target modulations were imaged by an 8-nm pinhole 
array onto a framing camera, allowing up to eight images 
with a temporal resolution of ~80 ps and a spatial resolution 
of ~10 nm to be captured at different times in each shot.29 The 
initial target modulations, used for RT growth measurements, 
were imprinted by laser-beam nonuniformities created by using 
standard distributed phase plates31 (SG8 DPP’s) during the 
first several hundred picoseconds of the drive. Figure 105.11 
shows a measured equivalent-target-plane image of the laser 
beam with the DPP [Fig. 105.11(a)] along with its Fourier 
spectrum [Fig. 105.11(b)]. The beam with DPP has broadband 
modulations with spatial frequencies up to ~320 mm–1, corre-
sponding to the smallest spatial size of ~3 nm and an intensity 
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Figure 105.11
(a) The equivalent-target-plane image of the laser beam with a distributed phase plate (SG8 DPP). (b) Fourier spectrum of relative intensity [dI/I] modulations 
of the laser beam with a SG8 DPP. The smallest size of intensity modulations in the beam is ~3 nm and it has an intensity modulation vrms of ~94%.
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modulation vrms of ~94%. The amplitudes of target modula-
tions at(k) are proportional to the amplitudes of relative laser 
modulations32,33 al(k), at(k) = E(k)al(k), where E(k) ~ 1/k is the 
imprint efficiency.33–35 Some experiments used smoothing by 
spectral dispersion (SSD)36 and polarization smoothing (PS)37 
to vary the spectrum of target modulations to study the depen-
dence of the RT growth on the initial conditions. Polarization 
smoothing reduces the modulations of most laser spatial fre-
quencies by a factor37 of ,2  while SSD reduces high-spatial 
frequency modulations more strongly than the low-spatial 
frequency modulations.36

The typical optical-depth (OD) images (obtained by taking 
a natural logarithm of intensity-converted, framing-camera 
images) of x-ray radiographs are shown in Fig. 105.12 for an 
experiment with a 20-nm-thick target driven with a 3-ns square 
pulse shape.29 A Weiner filter (based on measured system 
resolution and noise) was applied to these images to remove 
noise and deconvolve the system’s modulation transfer func-
tion to recover target OD modulations.29 The measured target 
OD variations are proportional to the variations of target areal 
density d[tR]; ,t E R tOD CH=d n d t] ] ]g g g6 7@ A  where nCH(E) 
is the CH target mass absorption rate at x-ray energy E used 

for backlighting and t is the time of the measurement. The 
areal-density d[tR(t)] modulations were obtained by dividing 
measured OD modulations by target mass absorption rates. The 
RT growth of the initial nonuniformities was analyzed in the 
central parts (with a box size of up to 400 nm) of these images 
where the average drive is uniform.

As laser light is applied to the target, the pressure created by 
the target ablation launches a shock wave that compresses the 
target.35 Any nonuniformities in the laser drive are imprinted 
into the target modulations at this time.32–35 When the shock 
front reaches the rear surface of the target, it sends the rarefac-
tion wave back to the ablation surface; shortly thereafter, the 
target begins to accelerate (in these experiments after around 
0.5 to 1 ns, depending on target thickness). During the accel-
eration phase, the ablation-surface modulations grow exponen-
tially because of Rayleigh–Taylor instability.1–3 At later times 
these modulations become detectable with our diagnostics as 
their evolution enters the nonlinear regime. 25,26,28,29

Experimental Results
Figure 105.13 shows the Fourier spectra of growing target 

areal-density modulations d[tR(t)] measured in 20-nm-thick 
targets [Figs. 105.13(a) and 105.13(b)] and a 40-nm-thick target 
[Fig. 105.13(c)] driven with a 3-ns square laser drive pulse at an 
intensity of ~2 # 1014 W/cm2 (Refs. 25 and 29). The smoothing 
conditions included DDP’s, SSD, and PS on a shot shown in 
Fig. 105.13(a) and DPP’s only on shots in Figs. 105.13(b) and 
105.13(c). The dashed lines show Haan’s saturation levels18 
(as described in the Introduction on p. 17). The smoothing 
conditions were varied to determine whether the shapes of 
modulation Fourier spectra in the nonlinear regime depend 
on the initial conditions. The target thickness was varied to 
measure the sensitivity of modulation Fourier spectra to drive 
conditions since target acceleration and growth rates depend 
on the target thickness. The shapes of the measured spectra 
are very similar to Haan’s model predictions in all shots25,29 
(compare with Fig. 105.10). These shapes are insensitive to 
initial and drive conditions, as predicted by Haan’s model. In 
the shot with more laser smoothing [Fig. 105.13(a)], the modu-
lations are detected later than in the shot with less smoothing 
[Fig. 105.13(b)], and the growth is shifted by ~1 ns. In the 
shot with a 40-nm-thick target [Fig. 105.13(c)], the growth is 
detected later than with a 20-nm-thick target because of the 
reduced growth in the thicker target [compare Figs. 105.13(b) 
and 105.13(c)]. At later times, the measured modulation level 
becomes comparable with the target thickness and the effects of 
finite target thickness significantly slow the growth,29 as shown 
in Fig. 105.14(a). The amplitudes of short-scale modulations 
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Figure 105.12
X-ray framing-camera images of RT growth modulations measured at 
(a) 1.8 and (b) 2.3 ns in a 20-nm-thick target driven by a 3-ns laser pulse at 
an intensity of ~2 # 1014 W/cm2. Central, 400-nm-square parts of the images 
were taken for analysis.
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even decrease toward the end of the drive (~2.8 ns) because of 
this effect.29 The measured target images [see Figs. 105.14(b) 
and 105.14(c)] show that smaller bubbles start to merge as 
larger bubbles grow during this time. In these earlier 1999 
experiments, two questions still remained: (1) Do the bubble-
merger processes happen around saturation levels or do they 
begin in a more deeply nonlinear regime (as it was considered 
in bubble-competition models)? (2) Is the bubble competition 
accompanied by a reduction of the short-wavelength modula-

Figure 105.14
(a) Evolution of the azimuthally averaged, areal-density modulation Fourier amplitudes as a function of spatial frequency for the shot with a 20-nm-thick 
target driven by a 3-ns laser pulse at an intensity of ~2 # 1014 W/cm2 and with beam-smoothing conditions including DDP’s, SSD, and PS measured at 2.5 and 
2.8 ns. As the level of target modulations becomes comparable to the target thickness, the modulation growth slows down and is later reversed (at 2.8 ns). The 
bubble-merger processes are evident from the images measured at (b) 2.5 ns and (c) 2.8 ns.
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Figure 105.13
Evolution of the azimuthally averaged, areal-density modulation Fourier amplitudes as a function of spatial frequency for shots with 20-nm-thick [(a) and (b)] 
and 40-nm-thick (c) targets driven by a 3-ns laser pulse at an intensity of ~2 # 1014 W/cm2 and with beam-smoothing conditions that include DDP’s, SSD, and 
PS (a) and DPP’s only [(b) and (c)]. The dashed line is Haan’s saturation level Sk = 2/Lk2 (L = 400 nm is the size of analysis box) multiplied by the calculated 
target density to be converted to areal density. The spectral shapes of measured modulations are similar to those predicted by Haan’s model and are insensitive 
to initial and drive conditions.

tions [as shown in Fig. 105.14(a)], or is this reduction because 
of the finite target thickness effects?

To address these questions and to make a connection 
between Fourier-space and real-space models, new experiments 
were conducted26 with thicker targets driven to much higher 
amplitudes with longer pulses in a deeper nonlinear regime. 
Figure 105.15 shows examples of the measured images26 for a 
shot with a 50-nm-thick target driven by a 12-ns square pulse 
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Figure 105.15
Central parts (with the analysis box size of 333 nm) of the x-ray framing-camera images measured at (a) 4 ns, (b) 6 ns, and (c) 10 ns in a 50-nm-thick target 
driven by a 12-ns laser pulse at an intensity of ~5 # 1013 W/cm2 from Ref. 26. The bubble merger is evident in the images showing more advanced nonlinear 
RT evolution measured in thicker targets driven by longer pulses.

Figure 105.16
(a) Evolution of the azimuthally averaged, areal-density modulation Fourier amplitudes as a function of spatial frequency for shots with 50-nm-thick targets 
driven by a 12-ns laser pulse at an intensity of ~5 # 1013 W/cm2 from Ref. 26. The dashed line is Haan’s saturation level Sk = 2/Lk2 (L = 333 nm is the analysis 
box size) multiplied by the calculated target density to be converted to areal density. The spectral shapes of the measured modulations are similar to those 
predicted by Haan’s model. (b) Saturation velocities of target modulations measured at spatial frequencies of 8, 17, 33, and 50 mm–1 corresponding to spatial 
wavelengths of 120, 60, 30, and 20 nm from Ref. 26. The dashed line is Haan’s saturation velocity Vs(k) = Skc(k). The measured nonlinear velocities are in 
excellent agreement with Haan’s model predictions.

shape at an intensity of ~5 # 1013 W/cm2. The beam-smoothing 
conditions in these experiments included DPP’s and PS. As 
the modulations grow, the average bubble size shifts to longer 
wavelengths, big bubbles become bigger, and small bubbles 
disappear, as is evident from the images in Fig. 105.15. Two to 
three generations of bubbles change (by coalescence events) in 
these images, allowing clear observations of the bubble com-
petition and merger processes. One can claim that the bubble 
competition and merger processes occur around saturation 
levels (and not only in a more advanced, turbulent regime). 

Figure 105.16(a) shows examples of Fourier amplitude evolution 
of areal-density modulations, typical for these experiments.26 
The spectral shapes are very similar to Haan’s model predic-
tions; the amplitudes grow to much higher values than those 
achieved in the 1999 experiments29 because thicker targets do 
not limit RT growth at the times of these measurements. The 
fact that in the 2005 experiments [see Fig. 105.16(a)] there is 
no reduction in short-wavelength modulations allows one to 
conclude that the bubble competition is not accompanied by 
a reduction of the short-wavelength modulations [as shown in 
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Fig. 105.14(a)]—this reduction is because of the finite target 
thickness effects that limited RT growth and prevented clear 
observation of the bubble competition in the 1999 experi-
ments. Additionally, the fact that the RT growth in the 2005 
experiments is not limited by target thickness allows a direct 
comparison of the measured nonlinear velocities Vs(k) with 
those predicted by Haan’s model,26 and excellent agreement 
between the experiments and the model was observed26 
[as shown in Fig. 105.16(b)]. We find it remarkable that this 
simple model predicts such complicated phenomenon as the 
nonlinear saturation and the postsaturation growth of the RT 
instability so accurately in terms of the spectral shapes and 
nonlinear velocities.

The real-space analysis of the 2005 experiments was based 
on evolution distributions of the bubble sizes and amplitudes 
along with the evolution of average bubble size and ampli-
tude.28 Figure 105.17 shows an example of the measured 
image with bubble edges superimposed on top of it. The 
bubble edges were determined using a watershed algorithm.38 
The bubble size m was calculated using m = 2(S/r)0.5, where 
S is the bubble area. The evolution of the distributions of 
bubble sizes m [corresponding to images in Figs. 105.14(a) and 
105.14(b)] is shown in Fig. 105.18(a). As modulations grow, 
the number of bubbles decreases while their average size and 
amplitude increase and the distributions become broader. 
The measured distributions of bubble sizes were fitted with 
the normal distributions from which average sizes GmH were 

determined. Figure 105.18(b) shows the normalized distribu-
tions [from Fig. 105.18(a)] as functions of normalized bubble 
size .m m  Bubble size distributions are in the self-similar 
regime because the normalized distributions do not change in 
time. The self-similarity of RT growth is explicitly measured 
in these experiments using the evolution of bubble size dis-
tributions, while in earlier simulations and experiments16,17 
the self-similarity was inferred from the growth of the mix-
ing-zone size. The dashed line in Fig. 105.18(b) represents 
the fit to the experimental data using the normal distribution 
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Figure 105.17
An example of the measured image with bubble edges (determined using 
watershed algorithm38) superimposed on top of it.

Figure 105.18
(a) Examples of the measured bubble size distributions in the images taken at 4 and 6 ns [images in Figs. 105.15(a), and 105.15(b), respectively] with a 50-nm-
thick target driven by a 12-ns laser pulse at an intensity of ~5 # 1013 W/cm2. (b) Bubble-size distributions, normalized to the total number of bubbles, as a 
function of the bubble size normalized to the averaged bubble size m m  for the same 4- and 6-ns images as in (a). The measured bubble distributions are in a 
self-similar regime because their normalized distributions do not change in time. The thicker dashed line represents a normal distribution fit to the data.

E14079JRC

10
0

10

20

30

40

20 30 40

Bubble size m(nm)

N
um

be
r 

of
 b

ub
bl

es

50 60 70 0.0
0

1

2

3

0.5 1.0

Normalized bubble size m/GmH

N
or

m
al

iz
ed

 n
um

be
r 

of
 b

ub
bl

es
(a

rb
itr

ar
y 

un
its

)

1.5 2.0

3-D

t = 4 ns

t = 6 ns

t = 6 ns
t = 4 ns

(a) (b)

2-D



Rayleigh–TayloR gRowTh MeasuReMenTs of 3-D MoDulaTions in a nonlineaR RegiMe

LLE Review, Volume 105 23

,expf C C1 2 22 2
= - - $m m m m rv m m^ _h i: D  where Cm = 

0.24!0.01 is the constant determined from the fit. The dotted 
and dot–dashed lines in Fig. 105.18(b) are the distributions pre-
dicted from the 2-D and 3-D models, respectively (presented in 
Ref. 27). The 3-D model prediction is in better agreement with 
the experimental results, as expected. It was shown28 that the 
modulation vrms grows as avgt2, as expected in a self-similar 
regime, where g is the foil acceleration, t is the time, and av = 
0.027!0.003 is a measured constant. The bubble-front ampli-
tude hb can be estimated18 as ~ ,h 2b rmsv  which yields hb ~ 
0.04 gt2. It was shown in Refs. 20 and 39 that Haan’s satura-
tion at amplitudes Sk = 2/Lk2 in Fourier space is equivalent 
to self-similar growth hb = 0.04 gt2 in real space. Therefore, 
experimentally measured growth is in agreement with what was 
predicted.20,39 The weak, logarithmic dependence of the av on 
the initial conditions17 still requires experimental verification 
for ablative acceleration.

The experimental results presented above show the behavior 
of “average” modulation characteristics. The evolution of the 
average amplitude (calculated by the azimuthal average of the 
2-D Fourier image) was compared with Haan’s model predic-
tions in Fourier space. The analysis in real space was presented 
in terms of bubble size distributions. The measured data, how-
ever, can also be used to quantitatively describe what happens 
to an individual bubble (in real space) and individual Fourier 
mode (in Fourier space). Figure 105.19 shows images of the 
modulation growth at the same area of the target measured at 
2.7, 3.5, and 4.3 ns in the shot with a 35-nm-thick target driven 
at an intensity of ~5 # 1013 W/cm2. 

Figure 105.19
The evolution of the same target area as shown by the central parts (with a 333-nm analysis box size) of the x-ray framing-camera images measured at (a) 2.7 ns, 
(b) 3.5 ns, and (c) 4.3 ns in a 35-nm-thick target driven by a 12-ns laser pulse at an intensity of ~5 # 1013 W/cm2. The evolution of each modulation feature can 
be tracked in these images.
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Figure 105.20
Bubble edge contours of the 2.7-ns (gray contours) and (c) 4.3-ns (black 
contours) images from Fig. 105.19. Some of the bubbles do not change their 
size while most bubbles merge into bigger bubbles and some bubbles disap-
pear during evolution.

Figure 105.20 shows overlapped bubble contours of the 
2.7- (gray lines) and 4.3-ns (black lines) images. As evident 
from this figure, some bubbles coalesce with others to form 
larger bubbles. Some bubbles disappear and other bubbles 
expand to take their place, while some bubbles stay in their 
original place without changing sizes. As for the Fourier-
space analysis, if all modes at any wavelength grow uniformly 
according to Haan’s model prediction for the average modula-
tion growth, there could not be a bubble merger in real space. 
Therefore, to be consistent with the bubble-merger picture of 
real-space evolution, the individual Fourier modes at a given 
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(mainly short) wavelength should have a different growth 
than their average amplitude. Figure 105.21(a) shows the Fou-
rier image with typical “spiky” amplitudes, characteristic to 
“noise-like” 3-D modulations. The azimuthal lineout of data 
at a 60-nm wavelength is shown in Fig. 105.21(b). There are 

Figure 105.21
(a) An example of the typical measured Fourier-space image (shown in terms 
of the absolute value). (b) The azimuthal lineout of this image at a spatial 
wavelength of 60 nm. The azimuthal lineouts of absolute values of Fourier 
modes at a (c) 60-nm wavelength and a (d) 20-nm wavelength measured at 
2.7 and 3.5 ns. (e) Normalized (to the value at zero phase change) histograms 
of the absolute phase change of the modes at spatial wavelengths of 20, 30, 
and 60 nm calculated from the difference of the 2.7- and 3.5-ns images. The 
bubble merger in Fourier space corresponds to the short-wavelength modes 
growing nonuniformly (with many modes changing their phases significantly), 
while longer-wavelength modes do not change their phases.

many modes in this lineout and their average amplitude grows 
according to Haan’s model prediction, as shown above. Is the 
growth of each individual mode in this lineout the same as 
the growth of the average amplitude? If it is the same, then 
the phase of each mode (related to the ratio of the real and 
imaginary parts of the mode’s complex amplitude) does not 
change in time. Figure 105.21(c) shows the evolution of the 
absolute values of modes in a 60-nm wavelength lineout from 
2.7 to 3.5 ns, while the evolution of the modes in a 20-nm 
wavelength lineout is presented in Fig. 105.21(d). These data 
show that all 60-nm wavelength modes grow similarly, while 
modes at a 20-nm wavelength do not all grow the same way 
and many phase changes are seen during the growth of these 
short-wavelength modes. Figure 105.21(e) shows the histograms 
of the absolute values of the phase changes of all modes at 
spatial wavelengths of 20, 30, and 60 nm measured between 
3.5- and 2.7-ns images. At wavelengths of 30 and 60 nm, most 
of the modes do not change phases, while most of the modes at 
wavelengths of 20 nm change their phases significantly. As a 
result, the bubble merger in Fourier space corresponds to short-
wavelength modes growing nonuniformly (with many modes 
changing their phases significantly), while longer-wavelength 
modes do not change their phases, meaning that the images 
keep their long-wavelength structure unchanged.

Conclusions
The nonlinear Rayleigh–Taylor growth of 3-D nonunifor-

mities was measured near saturation levels using x-ray radi-
ography in laser-driven planar foils. The initial target modu-
lations were seeded by laser nonuniformities. The measured 
modulation Fourier spectra and nonlinear growth velocities 
are in excellent agreement with Haan’s model18 predictions 
in Fourier space.25,26 These spectra and growth velocities are 
insensitive to initial conditions. Bubble competition and merger 
was quantified by the evolution of bubble size distributions 
in real space. A self-similar evolution of these distributions 
was observed.28
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