Both experiment and theory indicate that shaped adiabats improve the hydrodynamic stability and the performance of directly driven inertial confinement fusion (ICF) capsules. Pickets preceding the main target drive pulse increase and shape the ablator adiabat. The front cover compares the x-ray images of two capsules at peak compression for a laser pulse with and without a picket. The corresponding hydrodynamic simulations for these two cases are provided in the inset. It is evident that targets compressed by pulses prefaced with a picket exhibit reduced ablation-interface Rayleigh–Taylor seed and growth rate. Additionally, these targets exhibit higher compression and larger fusion yields from fusion reactions compared to the case of a pulse without a picket.