Shock Propagation in Deuterium-Tritium—Saturated Foam

Introduction

Over the past few years there has been considerable interest
regarding the use of foam shells in inertial confinement fusion
(ICF)! targets. The original proposed use of plastic foam shells
was as a matrix for liquid deuterium—tritium (DT) fuel.2
More recently, in the designs of Colombant et al.,3 foam has
been proposed for use as an ablator material, in conjunction
with an outer layer of a high-atomic-number material such as
Pd. In these designs, the foam is preheated by radiation from
the outer layer and has substantially higher ablation velocities,
resulting in a more-stable outer surface. In other high-gain
“wetted-foam” designs,* the foam is used primarily because it
has a higher atomic number than DT. This results in greater
absorption and increased laser-energy coupling, which in turn
allows more fuel to be used without reduction in stability,
resulting in higher gain. Sophisticated target designs for iner-
tial fusion energy (IFE) that build on these techniques and use
wetted-foam layers have been designed and tested compu-
tationally (see, for instance, Ref. 5 and references therein).
Foam has also been suggested to reduce laser imprint in direct-
drive ICF.

Direct-drive ICF target designs use a pulse that drives at
least two main shocks into the target. Target performance
depends in part on the timing of these shocks. The first shock
propagating through a foam layer encounters an inhomoge-
neous medium. It is important to know whether this will have
any effect on the shock speed and resulting shock timing. In
addition, inhomogeneities in the foam can feed through to the
shell’s inner surface,’ and again to the outer surface, where
they may potentially contribute to seeds of hydrodynamic
instability during the deceleration and acceleration phases of
the implosion (respectively).

The length scale of the foam inhomogeneities is a fraction
of a micron; for one of the foams discussed here, the foam is
fibrous, with a fiber radius of about 1/20 um. A National
Ignition Facility® direct-drive target radius is much larger, at
least 1.5 mm, with a shell thickness of hundreds of microns.
This large range of length scales makes it prohibitive to model
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foam inhomogeneities in a simulation of a target implosion.
As aresult, simulations of foam-target implosions must model
the wetted foam as a homogeneous mixture.

To investigate the effects of foam microstructure, we have
performed two-dimensional (2-D) hydrodynamic simulations
of a shock propagating through a plastic foam saturated with
DT ice. In these simulations, the microstructure of the foam
filaments is resolved, allowing determination of its effects on
shock behavior. ICF-relevant wetted-foam simulations model-
ing the foam microstructure have been performed previously
by Phillips,” Hazak et al.,'® Kotelnikov and Montgomery,!!
and Philippe ez al.!2 Phillips considered an ICF-relevant case
of a shock propagating through a random arrangement of
plastic (CH) fibers filled with DT. He found that the shock-
front perturbations were comparable in size to the fiber radius,
and that the kinetic energy in the mixing region—the post-
shock region in which the foam and DT are mixed and poten-
tially homogenized — accounts for of the order of a few percent
of the mean kinetic energy. Hazak et al. performed 2-D
simulations of a shock propagating through a regular array of
CH fibers, filled with liquid deuterium (D,). They focused on
the mix region behind the shock, deriving generalized jump
conditions including fluctuations. Among other results, they
found that the fluctuations result in an under-compression
behind the shock, and that the jump to the under-compressed
state cannot be modeled by a simple change in the ratio y of
specific heats. Kotelnikov and Montgomery also simulated a
regular array of fibers, saturated with cryogenic DT. In their
simulations they made use of a kinetic-theory—based computa-
tional model. Like Hazak et al., they found that the inhomoge-
neities result in a post-shock mixing region in which energy is
temporarily stored in turbulent motion. Finally, Philippe et al.
performed simulations of DT-saturated foams using an adap-
tive-mesh-refinement code and allowing random fiber place-
ment. They focused on the effects of inhomogeneities on the
shock speed for alow- and high-density foam. They found that
for the high-density foam, the deviation in shock speed from
the homogeneous value was about 1% and less than 0.3% for
the low-density foam.
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This problem has also been addressed in astrophysical
contexts, where the ratio of the material densities is much
larger. The role of clumps in augmentation of the Rayleigh—
Taylor instability in supernova remnants was studied using
hydrodynamic simulations by Jun.!3 More recently, Poludnenko
et al.'* have simulated the interaction of a shock with a layer
of circular obstructions, or clumps, determining the critical
inter-clump distance required for the transition to a non-
interacting regime in which the clouds are destroyed by the
shock independently of one another. They also discussed mass
loading as well as the effects of finite layer thicknesses for the
collection of circular obstructions.

In our simulations the shock passage through a random
array of CH fibers separated by DT is simulated, and the time-
averaged level of fluctuations is determined as a function of
distance behind the shock front for quantities of interest. We
define the decay length for a quantity as the inverse of the
logarithmic derivative of the quantity’s perturbations [see
Eq. (1)]. We will show that the decay lengths are comparable
to a micron for a wide range of foam densities. For shock prop-
agation distances characteristic of ICF targets, the average
post-mixing region conditions approach those given by the
Rankine-Hugoniot jump conditions. We also address ques-
tions of feedthrough and feedout, showing that the stability of
the shock front once it leaves the wetted-foam layer minimizes
the effect of feedthrough.

In the following sections (1) the hydrodynamic code used
and the simulations that were performed are described; (2) the
interaction of a shock with a single circular obstruction is
discussed; (3) the results of multifiber simulations and their
implications are presented; (4) the role of the pusher (i.e., the
inflow boundary conditions) is discussed; and (5) our conclu-
sions are presented.

Numerical Simulations

The code used for these simulations, AstroBEAR, !5 is based
on the adaptive-mesh-refinement (AMR) code AMRCLAW. 16
Inthe AMR approach, subregions of the computational domain
are provided with higher resolution according to a refinement
criterion such as the magnitude of the truncation error or the
local gradients of the hydrodynamic variables. Because the
entire simulation region is not simulated at the highest resolu-
tion, the AMR scheme typically provides much-reduced ex-
ecution times. In thisimplementation of AMR, the code attempts
to optimally gather the refined cells into rectangular subgrids
in order to minimize the overhead associated with refinement,
and subsequently the hydrodynamic equations are advanced in
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each grid and on every refinement level. The refinement
criterion used in AstroBEAR is Richardson extrapolation, in
which cells are flagged for refinement based on a local estima-
tion of the integration error. AstroBEAR employs a fully non-
linear Riemann solver with the second-order-accurate Wave-
Propagation Algorithm integration scheme of LeVeque.!” A
polytropic equation of state is used with aratio of specific heats
y = 5/3 gas. Thermal and radiative energy transport are not
modeled in these simulations. We expect that in a real target
implosion these mechanisms will dissipate fluctuations in the
post-shock mix region. The results of our simulations will thus
overestimate the size of the post-shock mix region and under-
estimate the fluctuation decay rate behind the shock. The
effects of radiation could in principle be imitated by elevating
the initial fiber pressure to model the absorption by the fibers
of radiation emitted from the corona.

AstroBEAR tracks multiple materials by solving separate
continuity equations for each of the materials—the fiber
material and the DT — which provides a measure of the level of
mixing after the shock (this is referred to as volume-fraction
contouring).!8 There is no interface construction at the bound-
ary between the two materials. Instead, the mass of each
material is maintained for a given cell. For instance, consider
two adjacent cells, the left containing the first material at a
higher pressure and the right the second material at a lower
pressure. After one time step, the boundary between the two
materials will have moved into the right cell, and at the end of
that time step the right cell will be considered to contain a
uniform mixture of both materials, with the appropriate frac-
tions. Material interfaces experience some degree of smearing
as a result. Shock-tube tests indicate that on the time scale of
these simulations, the material interface is spread out over a
distance approximately equal to the initial fiber radius. This
method of material tracking is passive and in no way affects the
hydrodynamics behind the shock, or the decay of perturbations
in the mix region.

AstroBEAR solves the Euler equations, making no provi-
sion for turbulent motion. The Reynolds number is Re = UL/v,
where U is a characteristic flow speed, L is a characteristic
length scale, and v is the viscosity coefficient. For a shock in
wetted foam, we may take for the length scale L the fiber
radius a (~1/20 um for the foam density of interest), and for
the characteristic flow speed U the post-shock flow speed u
(~30 km/s is a characteristic post-shock speed). Following
Robey,!” we may estimate the kinetic viscosity using the
model of Clerouin er al.?® The initial shock strength and
electron and ion conditions for the high-gain, direct-drive, NIF
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wetted-foam design described in Ref. 4, determined by 1-D
simulations using LILAC,2! give a Reynolds number of
~2800. This is below the value of 7700 typically taken as the
critical value for the onset of turbulence. In our simulations no
artificial viscosity is used, although a similar effect is obtained
by splitting the contact discontinuity according to the scheme
of Robinet et al.?2 This is done to prevent the growth of
unphysical features (often referred to as “carbuncles”). Care
has been taken to ensure that physical features are not damped.

As mentioned above, wetted-foam target designs, such as
the one described in Ref. 4, take advantage of the higher laser
absorption of plastic fiber than pure DT. In these designs a
low-density plastic foam, which has a dry-foam density of
~140 mg/cc, is saturated with DT ice, e.g., CH(DT)y, raising
its density to 360 mg/cc. A typical direct-drive, NIF-scale
target design consists of a shell of DT ice surrounded by a thin
layer of plastic. In a wetted-foam design, an outer portion of the
DT shellis replaced by wetted foam. The thickness of this layer
is chosen so that the foam is entirely ablated by the laser pulse.
In choosing the density of the foam, a balance must be struck
between the increased absorption, which is greater for larger
densities, and minimizing the radiative preheat of the inner-
fuel layer of the DT ice, which is also greater for larger foam
densities. As in many direct-drive target designs, the pulse
consists of an initial intense picket, followed by a foot pulse,
and then a drive pulse. The picket/foot combination launches
the first shock into the shell, creating a greater adiabat in the
ablator than in the inner-fuel layer. The second shock, launched
by the more-intense drive pulse, is timed to meet the first shock
inside the gas within the shell. The first shock is most relevant
here since it is the only shock to encounter unshocked and
unmixed wetted foam.

We have performed a number of simulations to investigate
the effects of microstructure on shock propagation. The base-
line simulation consists of an 8-um x 0.8-um simulation re-
gion filled with a mixture of DT (with a density of 0.253 g/cc)
and randomly placed polystyrene (CH) fibers (with a density
of 1.044 g/cc). The foam being simulated, resorcinol formalde-
hyde (RF), is a fibrous foam with fiber spacing of ~0.1 to
0.2 um. For RF, denser foams generally have the same average
center-to-center fiber separation, but with thicker fibers. We
simulate a foam that has a random array of fibers with the same
average density as a rectangular array of fibers with a unit cell
size of R = 0.2 um. This corresponds to an average nearest-
neighbor distance of d ~ 0.13 um (so the simulation size is
~60 d x 6 d). The combination of fiber density and average
density, for a given fiber spacing, determines the fiber radius:
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for CH(DT), the fiber radius is a ~ 0.0428 um. The dry-
foam density pgy, and wetted-foam density p,y. are related
bY Pave = Pary + PDT ~ PdryPpT /PcH - The dry-foam density
isgivenby pgry = pchﬂ(a/ R)z. In these simulations generally
two levels of refinement, both x4 (so that a cell being refined
is replaced by 16 cells in a 4 x 4 grid), were used in addition to
the base level. The cells have an aspect ratio of unity, with a
resolution at the highest level of 800 cells/um, and an equiva-
lent simulation size at the highest resolution of 6400 x 640.
This corresponds to about 68 cells across a fiber. We find neg-
ligible differences between 34 and 136 cells per fiber radius.
This convergence is supported by a resolution scan performed
using AstroBEAR by Poludnenko et al. [Ref. 23; see their
Fig. 3(a)], who also found only small differences between 32
and 64 cells per fiber radius.

In addition to this simulation size, we have also performed
simulations with a size of 0.2-um transverse to the shock
propagation direction, but with a 16-um-simulation region
length in the direction of shock propagation, in order to extend
the size of the mixed region. The upper and lower boundary
conditions in these simulations are periodic, so the central
difference between these simulations is that in the thinner one
the lateral distance between the fibers is always 0.2 um.

If we take the ablation-driven shock to travel to the right,
then the right simulation boundary condition is outflow, or
zero-order extrapolation, and the left is inflow. The inflow
conditions are given by the Rankine—Hugoniot conditions for
the average pre-shock density and pressure and for a post-
shock pressure of 8 Mbar. We refer to this as an “impedance-
matched” boundary condition [other inflow boundary condi-
tions are discussed in the Results for Different Pushers
section (p. 237)]. The CH and DT are initially in pressure
equilibrium with a pressure of 0.01 Mbar. The flow, being
governed by the Euler equations, is independent of Mach
number when in the strong-shock limit,2* so that the results are
not sensitive to the initial pressure.

The Interaction of a Shock with a Single Fiber

The interaction of a shock with a single fiber (or circular
obstruction) has been studied extensively as a hydrodynamic
problem.23-26 Additional physical elaborations have also been
modeled, such as partial ionization?” and magnetized obstruc-
tions (see, e.g., Ref. 28). Following Klein et al.,?* the interac-
tion of a shock with a fiber may be broken down into several
distinct phases. If the flow were one-dimensional, a “forward”
shock would propagate through the fiber, compressing and im-
pulsively accelerating it, while a “reverse” bow shock would
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be reflected back into the DT. Once the forward shock had
crossed the fiber, a rarefaction wave would be sent back across
the fiber, followed by a continuous period of acceleration that
would continue until the fiber speed equaled that of the sur-
rounding shocked DT.

Because the flow is two-dimensional, the fiber experiences
several shocks: In addition to the main forward shock, other
shocks are driven into the fiber from the sides as the shock in
the DT moves around and past the fiber. Similarly, many
rarefaction waves (RW’s) are launched as each of these shocks
breaks out of the fiber. These additional rarefaction waves
result in expansion during this phase, both in the direction of
and perpendicular to the direction of shock propagation. Fi-
nally, following the passage of these RW’s, the fiber begins to
accelerate. During this phase, the fiber is accelerated to the
speed of the ambient (DT) fluid flow.

As described in Ref. 25, the passage of the shock generates,
for a cylindrical fiber, two vortex lines behind the obstruction,
and for a spherical obstruction a vortex ring is generated. These
vortices and the vorticity generated by the shear flow as the
fiber is accelerated mix the fiber and interfiber material. For a
cylindrical obstruction and a normal shock (whose velocity
vector is normal to its surface), the vortex lines are of equal
magnitude and oppositely directed, so the total vorticity re-
mains zero. If the shock is oblique, the symmetry is broken and
net vorticity may be generated.

The fiber is subject to the Richtmyer—Meshkov instability
as the shock first passes. As the fiber is accelerated to the
speed of the post-shock DT, it is also subject to the Rayleigh—
Taylor (RT) instability and, due to the shear at the fiber
boundaries, the Kelvin—Helmholtz (KH) instability. In the
case of a CH fiber and DT ambient fluid, the density ratio is
1.044 g cc=1/0.253 g cc~! ~ 4. Both the RT and KH instabilities
are more effective at mixing the fiber and ambient material
when the ratio of fiber to ambient density is greater. Fig-
ure 100.1 shows the density at three times for a fiber of radius
0.0428 um struck by a 3-Mbar shock, for a fiber-to-interfiber
mass density ratio of 4:1. A measure of the fiber’s mixing or
destruction time may be made by determining the fraction of
fiber material that lies outside the initial radius of the fiber from
its center of mass (this is shown in Fig. 100.2). If we take the
fiber destruction time as the time it takes for the flow to expel
75% of the fiber material from this region, we see that the fiber
is destroyed in ~13 ps.
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Figure 100.1
Density profiles at 4, 8, and 12 ps for a Mach-24 shock interacting with a CH
fiber. The density ratio is 4:1.

The Interaction of a Shock with Many Fibers

Consider now the case of a shock driven into a field of
randomly placed fibers. Here the shocked fibers interact with
one another, creating a “mix” region in which the post-shock
vorticity mixes the CH and DT. The density p(x, y) at 96 ps is
shown in Fig. 100.3(a) for a CH(DT), wetted foam struck by
an 8-Mbar shock with impedance-matched inflow boundary
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Figure 100.2

The fraction of fiber mass that lies outside the original fiber radius of the
fiber’s center of mass as a function of time. As the fiber material is mixed with
the ambient material, it is flung outside of its original boundaries. The solid
line is a single fiber with a 4:1 density ratio with the interfiber material
(see Fig. 100.1). The dashed line is from a simulation of fiber destruction in
the presence of other fibers. Taking the 75% mark as an arbitrary measure of
fiber destruction, the fiber is destroyed after ~12.3 ps for a single fiber and
~13.5 ps in the presence of other fibers, although in this case the fiber de-
struction is much more thorough.
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conditions. As was shown in Ref. 14, if the interfiber distance
is sufficiently large, the fibers enter a noninteracting regime
where the fibers are destroyed before they expand far enough
to interact with one another. The parameters of interest here are
in the interacting regime. The CH fiber density pcy alone is
shown in Fig. 100.3(b). The dual-vortex motion and the result-
ing mushroom-shaped features due to shock passage can be
seen in Fig. 100.3(b). From this figure we see that CH and DT,
which are clearly distinct at the shock front (the dotted line at
~5.4 um), are well mixed by the end of the mix region (at
~4 um). We also note from this figure that there is a thin region
between the shock front at ~5.4 um and the shocked fibers
(~5.3 um at y = 0.2 um). This gap between the shock and the
entrained shocked CH is due to the finite time the post-shock
flow takes to accelerate the fibers to the post-shock speed. In
this region the average density, being primarily that of the
shocked DT, is lower than in the rest of the mix region,
contributing to an initial under-compression behind the shock.

Figure 100.2 shows that when a fiber is mixed in the
presence of other fibers, the mixing proceeds more quickly ini-
tially and is more thorough (see also Ref. 14). For the simula-
tion used here, the ejected fiber mass asymptotes near 100%.
The degree of mixing may be demonstrated by designating one
of the fibers as a third species identical physically to CH but
maintained as a separate material numerically. Figure 100.4
shows contours of density for a particular fiber (solid lines), as
well as the total density (grayscale). By 120 ps, the outermost
contour, which represents 10% of the peak density, contains a
volume of 0.063 um?2. This is comparable to the specific
volume 0.04 um? of the fibers for this initial spacing.
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Figure 100.3

The total density (a) and CH density (b) at 96 ps for an 8-Mbar shock driven into wetted foam. The dotted line in (b) shows the location of the shock front.
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The mix region is also the source of the bow shocks re-
flected when the main shock encounters the fibers. These
shocks eventually propagate away from the main shock and
out of the mix region. The fluctuations in density, pressure, and
transverse velocity can be seen in their y averages— p, p, and
uy, —shown in Fig. 100.5 for the simulation of size 16 um x
0.2 um. (A horizontal bar is used to indicate an average over the
y coordinate.) The mixing flow, due to the reflected shocks
and the post-shock vorticity, is generally both horizontal — par-
allel to the shock motion—and vertical. The vertically moving
shocks are unsupported since the flow supporting the shock is
entirely horizontal. The vertical shocks, then, decay as the
shocked fibers sink into the mix region. In addition, since on
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average the upward-moving shocks will have the same strength
as the downward-moving shocks, one might expect the net
vertical speed once these have passed to be approximately
zero. Because of the random fiber placement, though, some
vertical motion remains behind the shock [Fig. 100.5(c)]. In
the 0.2-um-wide simulation, the periodic upper- and lower-
boundary conditions, combined with the small vertical simu-
lation size, mean that vertical motion as large as 10 um/ns
remains, even several microns behind the shock. In the 8-um

x 0.8-um simulation, LTy in the mix region is smaller. This is

because in the wider simulation there are fibers for a transverse
shock to encounter other than the fiber that created it.
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Figure 100.4

The total mass density (grayscale) and the mass density (lines) of material from a “tagged” fiber initially at x = 1.93 um and y = 0.42 um. The contour levels
for the tagged fiber correspond to 10%, 32.5%, 55%, and 77.5% of the peak tagged-fiber density. The frames are from (a) 30 ps, (b) 35 ps, (c) 45 ps, (d) 60 ps,

(e) 80 ps, and (f) 100 ps.
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Figure 100.5
The y-averaged density (a), pressure (b), and y velocity (c) at 300 ps for a
16-um x 0.2-um simulation.

To quantify this we have calculated average quantities
related to the flow behind the shock. The mix region is given
approximately by the region bounded on the right by the shock
x4(y;t) (assuming the shock is a single-valued function of y)
and on the left by the interface between the pusher (or inflow-
ing material) and the shocked wetted foam, x;(y;f), as is shown
in Fig. 100.6. If the wetted-foam layer is preceded by a CH
layer, for instance, then there will be a contact discontinuity at
the pusher/foam interface, where the density jumps but the
pressure is constant. The location of the fiber material in the
mix region is shown in Fig. 100.3(b), demonstrating that the
vorticity quickly mixes the CH and the DT behind the shock
front. For small fiber-to-DT density ratios the fluctuations in
the shock-front position as a function of y are small enough to
allow us to define an average shock position X,(#). The average
pusher location X,(t) is given, for a strong shock with y =
5/3, approximately by X; = X,(t = 0) + 3Dt/4, where D is the
average shock speed. The interface position may be inverted to
give the time 7;(x) when the interface is a distance x behind the
shock. The time average of a flow variable ¢, from when it is
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Figure 100.6

The mix region (shaded), pusher, and unshocked material are shown as a
function of time, in the frame of the main shock. The time averages are
computed of the flow variables in the mix region between the shock and the
pusher as functions of the distance behind the shock. For instance, the time
average at a distance x; behind the shock is found by averaging from time
1; to time 1.

LLE Review, Volume 100

233



SHOCK PROPAGATION IN DEUTERIUM—TRITIUM—SATURATED FOAM

first shocked to some final time Iasa function of the distance
x behind the shock, is then

L
(¢7>(x)=[tf - ti(x)] (f)é(x,t)dt,

where ¢ is the average of g(x,y) over y and brackets are used
to indicate this mixing-depth average. The distance x behind
the main shock front may be thought of as a depth within the
mix region. The mixing-depth average can also be taken of any
quantity independent of y, such as g,,, the nth Fourier-mode
amplitude of some variable g, in the y direction, or g, the
root-mean-square (rms) deviation of ¢ as a function of y. This
double average (g) is meaningful when the flow reaches a
steady state in which the average behavior of the fluctuations
as a function of distance behind the shock is roughly constant
in time. We have found this to be the case after the initial stages
of our simulations. Note that the averaging time is inversely
proportional to the distance from the shock front, so the statis-
tical fluctuations tend to be larger for greater distances from the
main shock front. The mix-depth averages of the root-mean-
square variations in the y direction are shown for the pressure,
the density, and the ratio of kinetic energy (in the pre-shock
frame) to total energy Eyjnetic / Etoral» and u, in Fig. 100.7, for

the 8-um x 0.8-um and 16-um x 0.2-um simulations discussed
above. The decay scale length

Ly = dx/d In{q,n,s) (1

just behind the shock in the mixing region for these variables
is comparable to 1 um for this foam density. The relative
Fourier-mode amplitudes of modes 1 to 6 of the pressure (not
shown) remain roughly constant with mix-region depth, sug-
gesting that the power is not moving to shorter or longer
wavelengths, but decaying uniformly at a rate independent of
mode number.

The rms amplitudes for a simulation of the same size but
50%-higher resolution are approximately equal to those in
Fig. 100.7, indicating resolution convergence. Since the rate of
decay of fluctuations is independent of resolution, the decay is
not due to numerical losses, but to the mechanisms described
above. When viscosity is negligible, the circulation in a given
region is conserved according to Kelvin’s circulation theorem
(see, for instance, Ref. 29); in effect, vortices are “frozen” into
the fluid and are advected with the flow. For the case of
cylindrical fibers, as mentioned above, the vortices are created
in opposing pairs with no net average vorticity generation. As
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Figure 100.7
The rms variations of the time-averaged density
(a), pressure (b), fraction of kinetic energy (in the

pre-shock frame) (c), and vertical velocity (d) as

functions of the distance behind the shock. These
show a decay length comparable to 1 um for this
foam density.
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the vortices interact behind the shock, they are free in time to
mix, but not decay, because of the absence of physical viscosity
and the small size of the numerical viscosity. The level of
mixing can again be gauged qualitatively by Fig. 100.4. In the
16-um simulation the mixing is sufficient to reduce the time
average of the rms variations to 1.2% for p, 1.8% for p, and
0.9% for Eyinetic / Etotal - Of the average values.

The pressure decay length [Eq. (1)] behind the shock as a
function of foam density is shown in Fig. 100.8. These values
are taken from simulations that have a simulation region of
8 x 0.2 um and an equivalent grid size of 6400 x 160. The error
bars in this plot are given by the linear regression used to
calculate the mixing length. Poludnenko et al. found,'* for
simulations with a larger ratio of fiber to interfiber density, that
the mixing was more efficient when the average minimum
interfiber distance was less than a critical distance. We find the
same result: for dry-foam densities less than ~75 mg/cc, for
which the interfiber distance is ~6.6 times the fiber radius, the
mixing length is about 1.2 um, as opposed to about 0.8 um for
higher densities. The difference between the interacting and
noninteracting regimes is illustrated by considering the vor-
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Figure 100.8

The decay length behind the shock as a function of foam density. The decay
length is approximated by the scale length of the time-averaged decay of
pressure variations just behind the shock. The error bars are given by the
uncertainty in the exponential fit.
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ticity generated by the shock. This is shown in Fig. 100.9 for
three foam densities—25, 75, and 150 mg/cc—for about the
same shock position. For these three densities, as mentioned
above, the average distance from fiber center to fiber center is
the same, but the fibers are of different sizes. The fiber radius
is given by a = R[pdry / (JUOCH )]1/ 2, so these densities corre-
spond to fiber radii of 0.0175 um, 0.0302 um, and 0.0428 um.
For 25-mg/cc density, the vortex dipoles associated with each
fiber remain paired and intact for much longer before interact-
ing with other neighboring vortex dipoles. In contrast, for
150 mg/cc, the dipole length increases much more quickly,
resulting in greater mixing.
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Figure 100.9

The vorticity is shown as the shock reaches ~6 um for three dry-foam
densities: (a) 25, (b) 75, and (c) 125 mg/cc. The average interfiber distance is
the same in all three cases, while the fiber radius is larger for higher foam
densities.

The Rankine—Hugoniot conditions represent conservation
of energy, momentum, and mass for a steady flow of polytropic
gas in the absence of transverse motion. The RH jump condi-
tions will be met over a region only to the degree that (1) the
shock is steady; (2) the flow in and out of the region is steady;
(3) the fluctuations at the left and right boundaries are
uncorrelated (e.g., <ﬁx> = (5><Iix>; see Ref. 10); and (4) the
turbulence and transverse motion have decayed at the down-
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stream boundary. The shock steadiness is given by the error of
the linear regression used to determine the shock speed; for the
16-um simulation, the speed is 54.32 um/ns+0.033 um/ns—an
uncertainty of 0.12%. As mentioned above, the post-shock
flow is approximately steady. The pre-shock flow is approxi-
mately steady when averaged over time scales much longer
than the characteristic time scale for the inflowing density
fluctuations, which is given by the time it takes the shock to
move from one fiber to the next, ~d/D. For an 8-Mbar shock
and a dry-foam density of 150 mg/cc, the shock speed is
~50 um/ns, and the averaging time must be longer than ~4 ps.
The duration of the 16-um simulation is, for instance, ~300 ps.
The fluctuations in the mix region are correlated by up to ~10%
just behind the shock, but these correlations decrease to a
fraction of a percent beyond 1 um from the shock. The
transverse velocity is ~1 um/ns for most of the mix region, and
the rms variations decay to ~0.4 um/ns by a mix-region depth
of 4 um (see Fig. 100.7). Post-shock turbulence leads to an
average excess of kinetic energy in the mix region (as in
Ref. 9) of 2%. Figure 100.10 shows the double averages of the
density, pressure, the ratio of kinetic energy to total energy (in
the pre-shock frame), and Uy for the 16-um simulation. Each of
these quantities approaches the value predicted by the Rank-
ine—Hugoniot (RH) jump conditions and by the end of the mix

region is within a few percent of those values. The pressure in
the majority of the mix region is 7.86+0.05 Mbar, 2.5% lower
than that of ahomogeneous simulation with the same boundary
conditions. The density over the same regionis 1.47+0.01 g/cc,
1.7% higher than the RH value. Not surprisingly, the small
deviation from the RH values results in a shock speed of
56.17+1.7 um/ns, which is near the RH shock speed (here it is
within 0.1%). The post-shock adiabat a~ pp~>/3 deviates from
the RH value by a comparably small amount:

61na=51np—§5lnp~—4%.

This deviation from the RH jump conditions is well within
the tolerance of high-gain, direct-drive foam designs for the
NIF. The main effect of variation in the speed of the first shock
is mistiming of the shocks. If the shock is too slow, for instance,
then the first two shocks will meet in the inner-fuel regions of
the shell, preheating the fuel and compromising target perfor-
mance. This effect can be simulated in 1-D by deliberately
mistiming the first shock, by varying the length of the foot
pulse. This is shown for a particular high-gain, wetted-foam
NIF target design (see Fig. 100.11).* Here a 10% change in
shock speed corresponds to a shock mistiming of 300 ps, and

Figure 100.10
T The time- and space-averaged density (a),
— pressure (b), ratio of kinetic to total energy

(in the pre-shock frame) (c), and vertical

velocity (d) as functions of the distance

behind the shock front. The values given by
the Rankine—Hugoniot jump conditions for
a homogeneous mixture of the same den-
sity are also shown (dashed lines).
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the target shows little change in gain for a mistiming of
>400 ps. For this design, at least, this suggests that any change
in shock speed due to foam microstructure will have little
effect on target performance. While the shock speeds for
relevant pressures in DT-wetted plastic foams have yet to be
measured experimentally, dry-foam shock speeds have been
shown to agree to within experimental error with Rankine—
Hugoniot values over a wide range of densities.3?
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Figure 100.11
The target gain as a function of first-shock mistiming for a high-gain, wetted-
foam, direct-drive NIF target design.

As the shock propagates through the wetted-foam layer, the
shock front acquires perturbations due to the different shock
speeds in the DT and CH [see Fig. 100.3(a)]. Shock-front
perturbations are potentially able to seed velocity and surface
perturbations on the inner surface of the target shell —a process
called feedthrough. When the shock reaches the inner shell
surface, a rarefaction wave is launched toward the outer
surface of the shell. These inner-surface perturbations are
carried to the outer surface of the shell by this rarefaction
wave —so-called feedout (see, e.g., Ref. 31 for a further de-
scription of these phenomena). During the acceleration phase
as the laser ablation drives the implosion of the shell, the outer
surface is subject to the Rayleigh—Taylor instability, which
may magnify position and velocity perturbations at the outer
shell surface. During the deceleration phase of an implosion,
the inner surface is also subject to the Rayleigh-Taylor instabil-
ity, causing fed-through perturbations to grow, potentially
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reducing the core temperature and shell areal density and
compromising target performance.

The rms variation in the amplitude of shock-front pertur-
bations is shown in Fig. 100.12 for a simulation where the
shock has propagated through 5 um of wetted foam, into 5 um
of homogeneous DT (with a transverse simulation size of
0.2 um). In the wetted foam, the shock-front perturbations are
comparable to a few nanometers. Shock fronts are stable32
because a concave perturbation leads to a locally converging
shock, higher pressure, and higher local shock speed, while a
convex perturbation has the opposite effect (see Ref. 33 for
further discussion of shock stability). The shock-front stability
causes the shock-front perturbations to decay quickly after
entering the DT layer, to a level of ~0.1 nm. These levels of
nonuniformity are well below the level of the inner-surface
shell ice roughness required for direct drive on the NIF.34

16 -
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Shock front rms perturbation amplitude (nm)

Shock position (um)
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Figure 100.12

The rms shock-front perturbation amplitude as a function of shock position
for a simulation consisting of 5 um of wetted foam and 5 um of DT. The
transverse simulation size is 0.2 um.

Results for Different Pushers

We will now consider two different inflow boundary condi-
tions, which correspond to different ablator materials, or “push-
ers.” If these boundary conditions are not the same as the
average post-shock conditions in the wetted foam as in the
“impedance-matched” conditions used above, then secondary
shocks or rarefaction waves will reflect off the wetted foam. To
illustrate the role of these reflected waves, we will first con-
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sider simulations in which the pusher is post-shock DT. This
simulates a wetted-foam shell for which the DT ice overfills
the foam shell. This will be followed by a description of sim-
ulations of a CH pusher.

The fibers and the DT are in pressure equilibrium before the
shock with a pre-shock pressure py. As the shock, of Mach
number M and strength z, moves through the DT pusher, it
raises the pressure to p, = p; (1 + z) and, since z >> 1 and
y = 5/3, the density to ~4pp. When the shock reaches the
wetted foam, it encounters a jump in the average density. The
strong shock is transmitted into the wetted foam, while a weak
shock is reflected back into the DT pusher. The reflected shock
further increases the DT pressure to p, + Op,, where Op,
depends on the density ratio and here dp, < p,. In simulations
where the fibers are resolved, this weak reflected shock is made
up of the shocks reflected off the individual CH fibers. These
reverse shocks are shown in Fig. 100.13, which shows the
density averaged over y (transverse to the shock propagation)
ataparticular time. In this case p, =3 Mbar, and dp, ~0.5 Mbar.
Since the post-shock DT and wetted foam are in pressure
equilibrium, this is also the pressure in the post-shock wetted
foam. Thus the post-shock pressure in the wetted foam is also
higher than p,, the post-shock pressure in the DT pusher. The
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resulting shock speed is given by D; = DDT(I +0p2 /Py )1/ 2,
where Dpt = [4 D2 / (3PDT )]l/ ? is the shock speed in the DT.

For comparison, if a shock of the same Mach number
(i.e., driven by the same pressure used to drive the DT above)
is launched into a homogeneous wetted-foam mixture of CH
and DT (rather than a DT pusher followed by a layer where
the individual fibers are resolved), it will have a shock speed
of Dy = DDT( ODT/ Pave )l/ 2, where p,,. is the average density
of the wetted foam. For ppt < pyye, Op2 >0 and so D; > D), —
i.e., when the shock is driven by a pusher of the same pressure
D the shock speed in an inhomogeneous mixture exceeds that
in a homogeneous mixture. This is seen in Fig. 100.13, which
shows p(x) and p(x) for a particular time for homogeneous
and inhomogeneous mixtures driven by shocks of the same
pressure p, and the same starting point. The degree by which
it exceeds the homogeneous shock speed depends on the
average fiber density and, while essentially a 1-D effect, can
also be related to the fiber radius.3?

For a laser-driven shock, this is not the steady-state solu-
tion. In this case, the reverse shock, when it reaches the abla-
tion surface, is no longer supported at that pressure, and a
rarefaction wave is launched into the target, lowering the

(b)
40 F ' ' ]

35+ - Y —

20 - .

p (Mbar)

1.5 - a

0.5

0.0 ' '
0 10 20

X (um)

Figure 100.13

The density (a) and pressure (b) as functions of distance for a particular instance in time, for a simulation of a shock driven through wetted foam by a DT pusher.

An equivalent homogeneous simulation is shown (dashed) as well as a simulation (dotted) in which pusher and foam are replaced by a homogeneous mixture

with the same average density as the wetted foam.
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pressure from p, + dp, to the ablation pressure, taken here to
be p,. The trajectories of the main and reflected shocks are
shown in Fig 100.14, in which the inverse of the pressure scale
length is plotted for a 1-D simulation of a high-gain, NIF
wetted-foam target design with a DT ablator. For this design,
this transient shock state persists for 70 ps. The RH jump
conditions, which must be obeyed in the case of a homoge-
neous mixture, are also approximately obeyed for the fiber-
resolved simulation (see Fig. 100.13, where the density of the
inhomogeneous case is compared to that of a homogeneous
case driven with a post-shock pressure p, + dp»).

|dInp/drl (um=1)
0.1 0.5 1.0

1986
1985

1984
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target. These waves are shown in Fig. 100.15, which shows the
inverse of the pressure scale length for a high-gain, NIF
wetted-foam target with a ~2-um-CH ablator. In contrast to the
case above of the DT pusher, the shock is undersupported until
the compression wave reaches it. This transient state lasts for
100 ps in this design. Figure 100.16 shows the y-averaged
pressure and density compared with a homogeneous simula-
tion also using a CH pusher. This shows again that the RH jump
conditions are obeyed, and the average shock speed is approxi-
mately the same in both cases.
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Figure 100.14

The magnitude of the inverse of the pressure scale length for a wetted-foam
ignition target design in which the wetted-foam layer is overfilled, forming
an external 2-um layer of DT. Shocks and rarefaction waves are labeled.

For target fabrication reasons, wetted-foam targets are
likely to be constructed with a thin outer layer of CH, the
second inflow boundary condition discussed in this section. In
this case, the ablator is of higher density than the wetted foam.
As a result, when the main shock moves from the CH to the
wetted foam, it increases in speed. Because of this, a rarefac-
tion wave is reflected off the interface, rather than a shock.
‘When the RW reaches the ablation surface, where the ablation
pressure is determined by the laser energy deposition rate, a
weak shock or compression wave is launched back into the
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Figure 100.15
The magnitude of the inverse of the pressure scale length for a wetted-foam
ignition target design with an external 2-um layer of CH.

Conclusions

High-gain, direct-drive, wetted-foam ICF targets have been
designed previously for use on the NIF and in IFE. Due to the
prohibitively large range of length scales from the foam micro-
structure to the pellet size, simulations of these designs gener-
ally assume a homogeneous mixture for the wetted foam. We
have simulated shock propagation in wetted-foam mixtures.
We have found that the size of the decay length behind the
shock is of the order of a micron for relevant foam densities. In
the mix region, the transverse and turbulent motion decay
sufficiently that the Rankine—-Hugoniot jump conditions are
obeyed to within a few percent. As a result, the average shock
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speeds are also within a few percent of their homogeneous
values. This implies that designs, which are less sensitive than
this to shock timing, may be simulated using the approxima-
tion of homogeneous mixtures.
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Figure 100.16

The density (a) and pressure (b) as functions of distance are shown for a
particular time, along with the values from a simulation of a corresponding
homogeneous medium with the same average pre-shock density (dashed).
The inflow boundary conditions correspond to a CH pusher.
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We have also considered the “lifetime” of shock-front
perturbations. As expected, because shock fronts are stable,
perturbations seeded by the wetted-foam layer decay quickly
after the shock enters the homogeneous DT-ice layer. There-
fore we expect the wetted-foam microstructure to have a
negligible effect on feedthrough and feedout.

Finally, we have examined the effects of using other “push-
ers”—DT and CH—to simulate the transient states that occur
early inatarget overfilled with DT ice and a target with an outer
CH overcoat. The RH conditions are also met to within a few
percent for these inflow conditions.
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