
A Containerized Approach for Data Analysis
on Omega

Aidan Sciortino
Wilson Magnet High School

Advisor: Richard Kidder
University of Rochester Laboratory for Laser Energetics

January 2019

1



Abstract

Scientific data analysis is critical to the work done at LLE. An important part of this
is enabling easy access to data and compute resources for scientists, both on the day of
a shot and afterwards. Current systems for accessing data for analysis are old, hard to
access, and have long download times. This makes quick analysis between shots very
difficult. This project explores possible ways to remedy this, presenting a container-based
system allowing web-based development of analysis programs, with easy access to data
on the webpage itself. This is part of a larger study of containerization as a way to provide
compute resources across the lab, scaled according to need.

1 Introduction

1.1 Challenges at LLE

One of the major challenges that needs to be addressed at LLE is how data access is provided

to scientists, both for on-site PIs as well as for visiting PIs. Currently on-site PIs connect

directly to the facility SQL database, or scrape data off statically generated webpages based

on technologies popular in the 1990s.

While external PIs can access these webpages beyond the firewall, they are unable to

access the SQL database and must rely on on-site scientists to share any data that can’t be

found on the webpages with them by email.

HTML scraping or writing SQL is inefficient and inhibits productivity, forcing scientists to

write extra code—and in the case of SQL learn a new programming language—instead of

allowing them to focus in on their specific research. In addition, writing SQL requires somewhat

intricate knowledge of the data structures within the database in order to build queries, without

which pulled data may be inaccurate.

Another major challenge encountered at LLE is the amount of time it often takes for a

scientist to access and analyze data from a shot. In order to access data scientists must

download it to their workstations, where analysis code must then be run. While some analyses

may be run well after the day of the shot, others are optimal to run in between shots in order

to catch and rectify any problems in the experimental setup. The process of loading data

2



and running these procedures is inconsistent, varying according to many factors including

but not limited to the age of the computer, the speed of the user’s internet connection, and

the amount of data that must be loaded. In cases where resources are unavailable, running

analyses between shots is not feasible. A containerized approach for scientific data analysis

provides a solution for consistent, secure access to data, services, and resources that will help

scientists formulate new methods for checking data in between shots, allowing further sharing

of responsibilities and better utilization of facility resources.

1.2 Modern Technologies

Since the SQL database and HTML pages were set up in the late 1990s, countless new ap-

proaches to provisioning programmatic data access for users have emerged. In addition, many

new technologies have emerged to allow for easier allocation of computing resources, includ-

ing the concept of containerization. Containerization builds on the concept of Unix process

isolation, in which the root directory of a process is changed such that it doesn’t affect other

processes. This concept evolved, through the concept of “Jailing” processes by partitioning

a full system into several smaller systems, each of which is assigned its own IP address and

system configuration. As cloud-based hosting grew and there became more and more de-

mand for technologies allowing allocation of compute resources for various cloud websites,

the concept of the container was embraced by many providers as a system for isolating and

allocating resource usage in cloud data centers.

In 2013 the Docker container system was introduced, which made containers significantly

easier to create. With Docker emerged Docker Hub, a platform that allows users to share

container images for other users to download and use. In 2014 Google introduced Kubernetes,

an open source container orchestration platform. Kubernetes solves the problems that Docker

does not, coordinating the way in which multiple containers share resources and interact.

In the past five years containerization has grown from a fringe technology used by few

companies for very specialized purposes in web hosting to the de-facto standard for deploying

3



modern applications, databases, and other stateless infrastructure.

2 Approaches to Service Compartmentalization

2.1 Bare Metal

In a bare metal architecture (shown in figure 1) an operating system runs directly on the hard-

ware, and holds libraries that all applications hosted on the server share.

App AppApp

Hardware

Operating System

Libraries

Figure 1: Traditional Bare-Metal System Architecture

This architecture prevents inefficient usage of storage space and processing power be-

cause the applications share libraries and operating system resources with each other. How-

ever, since applications share libraries, dependency conflicts (in which one application requires

a different version of a library than another) are common.

2.2 Virtualization

In a virtualized architecture (shown in figure 2) an operating system still runs directly on the

hardware, but its sole purpose is to run the virtualization software. The virtualization software

allows for the creation of multiple virtual machines, each of which has its own operating system,

and can hold its own libraries and applications.

4



Libs

App

Libs

App

Libs

App

Hardware

Operating System

Virtualization Software

Guest OSGuest OS Guest OS

Figure 2: Virtualized System Architecture

This architecture avoids the dependency conflicts described in section 2.1 by providing

each application with its own individual dependencies. In many cases this architecture is also

more secure due to the compartmentalized nature of the virtual machines. If one application is

compromised it does not mean that the entire system is; solely that machine. In comparison,

in a bare-metal architecture if one application is compromised all other applications on the

machine are vulnerable.

The primary disadvantage of virtualization is that an entire computer must be simulated and

an entire operating system must be virtualized, which uses significant overhead. This results

in less efficient systems and often has a negative impact on the performance of processes

running in virtual machines.

2.3 Containerization

A containerized system (shown in figure 3) presents a hybrid of the two previously mentioned

approaches. The operating system runs a container engine, similarly to how the operating

system in a virtualized system runs virtualization software. However, this container engine

5



does not simulate an entire machine for the apps contained in containers. Instead it passes

through core parts of the underlying host operating system, focusing on modularising only the

dependencies for each app in each container.

Libs

App

Libs

App

Libs

App

Hardware

Container Engine

Operating System

Figure 3: Containerized System Architecture

By sharing core parts of the operating system to each container, containerization avoids

the inefficiency of simulating entire computers and virtualizing entire operating systems as

described in section 2.2. However, it also avoids the dependency conflicts described in section

2.1 by providing individual libraries based on containers, and maintains many of the security

benefits of a virtualized architecture.

In addition, by passing through core parts of the host operating system, containerization

avoids the performance costs associated with virtualization.

3 Proof of Concept Application

The Shotday web application was planned and developed to demonstrate the possibilities that

containerization offers for data analysis solutions internally and externally. The application

builds upon modern container technology with modern web technologies such as Angular1

1https://angular.io/

6



and NodeJS2, and data analysis solutions such as Jupyter3.

3.1 Application Architecture

The application is based around the architecture depicted in figure 4. A frontend, written using

the Angular web framework, connects a user to a Linux container that serves as a backend.

This backend runs a Jupyter data analysis kernel that allows the user to write code in Python

3 or Matlab. This container has access to the LLE database using the user’s authentication,

such that code written in it can be executed anywhere, and still access facility resources.

Frontend

Middleware

OpenShift Load Balancer

Backend BackendBackendBackend

Figure 4: Shotday Architecture

The containers are all contained within the OpenShift4 containerization platform. This plat-

form extends the Kubernetes5 container orchestration platform, which is the industry standard

for managing containers in a production environment. This platform provides easy manage-

ment of container infrastructure that is easily scalable. It also automates tasks such as load

2https://nodejs.org/
3https://jupyter.org/
4https://www.openshift.com/
5https://kubernetes.io

7



balancing and allocating resources such as processing power, memory, and storage space to

containers.

The frontend and middleware are both designed to be stateless, such that the containers

themselves can be destroyed and recreated without users losing data. They are also designed

to be load balanced using the load balancing technologies included in OpenShift.

The backend containers are also designed to be stateless, with user programs being stored

in the facility’s Gitlab code management system. However, the backend containers are man-

aged by the Jupyter Enterprise Gateway, a piece of software designed by developers at IBM

and several other companies that manages Jupyter kernel deployment in High Performanc

Computing (HPC) and containerized environments.

4 Integration with Current Infrastructure

4.1 Current LLE Infrastructure

Currently LLE possesses an Oracle SQL database that stores data from laser shots. This

database provides data to webpages, which are used by different people across the lab for

different purposes.

Many scientists run data analysis routines on personal computers—generally either work-

stations or laptops. The lab also has several sources of high performance computing (HPC)

power, two on site as well as one off site, that are used for data analysis as well as for simula-

tions and other HPC-based experiments.

In addition, there is an existing code management tool called Gitlab that allows easy shar-

ing of and collaboration on code.

8



4.2 Proposed Containerized Architecture

The proposed containerized application provides scientists with a secure Linux container that

has easy access to all of the existing resources from anywhere in the world; not solely behind

the LLE firewall.

These containers have libraries that are designed to make pulling from the database sim-

ple, have access to the facility Gitlab system, and are designed with the intention of eventual

expansion allowing jobs to be executed on facility HPC resources.

Containers can be managed using existing facility infrastructure including the authentica-

tion servers already in use for both existing web services and user authentication into desktop

computers. In addition, containers present further security benefits as discussed in section

2.3, as such presenting a method that is as secure, and possibly even more secure, than the

methods currently used for data analysis.

5 Conclusions

The proof of concept presented in this paper serves only the function of providing scientists

with a web-based interface for doing data analysis. While containerization serves this specific

application well, it also holds significant opportunities and advantages that could be used to

enhance the lab’s existing infrastructure.

For example, stateless containers could be used to provide access to the facility database

via a web Application Programming Interface. This allows access to data without needing to

learn SQL or other programming languages. It also allows for easier integration of modern

web applications with facility data. Data services such as these are growing more common,

as more and more applications become web based. Containerization presents a thoroughly

future-proof method for implementing such services, and thus is a valid route forwards that

should be taken into consideration for use in the lab.

9



6 Acknowledgements

First and foremost I’d like to thank my advisor, Richard Kidder, for all of his guidance on this

project. Without Rick’s vision this project would not exist at all, and without his guidance in

connecting me with people around the lab, as well as his immense knowledge of the opera-

tions of the facility, I would not have been able to get anywhere close to the proof-of-concept

presented in this paper.

I’d also like to thank Michael Charissis, who set up the infrastructure required for the project

and from whom I’ve learned immense amounts about server administration and what todays

enterprise technology landscape looks like.

In addition I’d like to thank the informatics team (Andrew Zeller, Tyler Coppenbarger, and

Mathew Schweigardt), with whom I worked extensively investigating the feasibility of integrat-

ing the proof of concept into their existing code.

Finally I’d like to thank Dr. Craxton for organizing and running the summer intern program,

as well as all of the other summer interns with whom I had countless discussions in topics

in computer science, physics, and philosophy, and whom challenged me every day to think

harder and longer about many problems in all spheres of my work.

10


