

A Graphical User Interface to Oscilloscopes
D. Axman

West Irondequoit High School
Advised by Ralph Russo and Robert Rombaut

Laboratory for Laser Energetics
University of Rochester

250 East River Road
Rochester, NY 14623

 1

Abstract

 A graphical user interface (GUI) was created that allows a user to control and display

data from an oscilloscope by communicating across a network. The GUI provides a convenient

way to observe diagnostic signals throughout the OMEGA laser system. The GUI displays a

graph of the data received from each channel of the oscilloscope, showing the signal's shape as

well as other attributes. The user is able to continuously update the display with the most recent

data or, at any time, acquire a single trace. The user is also able to arm the oscilloscope or force

its trigger. The GUI communicates with the server program using ICE (Internet Communication

Engine), a software package used for network communications. This program will allow

scientists to analyze the shape of the laser pulse before and after it goes through the

amplification process.

Plotted signal
data

Figure 1. Graphical user interface display, showing the Channel Settings dialog box.

 2

Introduction

The motivation for this project was that viewing data from the OMEGA laser was not

yet as streamlined as it could be. This project entailed the creation of a GUI to enhance the

user’s ability to view and understand the data by gathering and arranging it in the most aesthetic

and understandable way possible. The main component of the GUI is the graphical display of

the signal data. This data is sent to the client program (a program whose main function is the

receiving of data over a network) from the server (a program whose main function is

distributing data over a network) as a list of bytes, a list that is twice the size of the actual

number of samples. This series of bytes is then converted into floating point numbers, which

represent the data collected from the oscilloscope.

Graphical User Interface

An example of the display generated by the GUI is shown in Figure 1. The colored

curves represent the signals (voltage vs. time) of channels 1 to 4. One of the primary problems

encountered during the creation of this graphical display of the signal data was the fact that

there are more samples and therefore more corresponding times on the horizontal axis for each

of these samples than there are horizontal pixels on the screen, with approximately one

thousand samples per horizontal pixel. This problem causes information to be lost due to the

inability to display the difference in times of each sample’s acquisition. The way that this

problem was solved was that the information was first stored so that it could be easily

referenced with precision and specificity in terms of time. Then, when the information was

graphed, instead of simply graphing each sample by plotting it on the pixel that graphically

represents the sample's time of occurrence in relation to the total time of the pulse, it was

determined that the best way to save display time and memory usage was, in each group of

 3

samples per horizontal pixel, to find the largest voltage and the smallest voltage, translate them

into a relative pixel coordinate and draw a vertical line between them, essentially creating a

“best fit line” for the graphed points. This was done because when all one thousand points are

plotted in the horizontal space of one pixel they appear as a simple line to the user regardless.

Incorporated into this graphical display is a function for more specific observation of point

values. This function makes it such that the user is able to drag his or her mouse on the graph

and the time and voltage at that point will be displayed at the bottom of the screen for each

channel that is enabled (see Figure 1).

On the bottom bar a key for the channels is displayed with a check box next to each

channel. Un-checking this check box will cause the channel to be hidden on the graph and

rechecking it will cause it to be shown. If the channel is disabled then the box is automatically

made blank. There is also an option for enabling a continuous refresh of the graph and box in

which the refresh rate can be specified in Hertz. There are also a number of functions that can

be performed such as doing a manual refresh on the graph, forcing the trigger, arming single

shot, and arming continuously. Any time the scope is armed it will acquire data on the next

trigger. Continuous arm causes the scope to acquire data at a fixed periodic rate while a single

shot arm only acquires once. By forcing the trigger the user can force the scope to capture the

pulse before the conditions are met for automatic triggering.

 At the top left corner of the screen is the file menu, which displays several commands:

Scope Settings, Channel Settings, and Exit. Exit will close out the window cleanly and end all

data acquisition from the server. Scope Settings will open up a dialog box (see Figure 2) with

all of the channel independent settings for the oscilloscope. Channel Settings will open a dialog

box (see Figure 1) with all of the channel specific settings for the oscilloscope. These settings

will be displayed under several tabs, one for each channel, so that it is easy to change settings

 4

for individual channels. Many of these settings are self-explanatory; however, some such as the

horizontal scale, the trigger level, position, and slope require explanation. The horizontal scale

is the scale in seconds, or the number of seconds per interval. The trigger level is the minimum

level of trigger signal required to trigger the scope. The trigger position is a position in time

defined somewhere on either side of the trigger signal. The slope is a check on whether the

slope of the pulse should be rising or falling to set off the trigger. When the fields for the

settings are altered by the user the text turns blue so that the user knows what was changed.

When the user hits the “Apply” button it sends the changes to the server program and the server

sets the scope with the new attributes. The client then retrieves the attributes back from the

scope and displays it in the fields as black text. The reason for this is so that if an invalid value

(a value that cannot be computed such as a word where a numerical value is required or a

number that is not supported by the program) is entered into a field and then set, the field will

not display an incorrect value. For example, if an extremely small number were entered for the

horizontal scale, the scope would only set the horizontal scale to the lowest possible value; this

value would then be displayed as the actual value and not the unobtainable one the user entered.

The “Get” button causes the settings to be changed to those on the scope and the text in all

fields to return to the color black.

 5

 Figure 2. Scope Settings dialog box, used for channel-independent scope settings

As shown in Figure 1 the channel dependent settings are set up in roughly the same

format as the channel independent settings with the obvious difference being that the channel

settings have tabs for the settings of specific channels. This dialog box contains settings for

changing quantities such as the vertical offset, vertical position, and vertical scale. This dialog

box also allows the user to enable or disable certain channels. When a channel is disabled it

will no longer be read by the oscilloscope, or displayed on the GUI. The same features

incorporated in the scope settings dialog are also present in the channel settings dialog.

This program uses Internet Communications Engine (ICE) (see [1]) to communicate

across the network with the server. ICE is a language-independent software package which

means that it can be used to communicate between two programs that are written in completely

different languages. ICE works by establishing a proxy and sending interpreted commands

 6

 7

across this proxy to be reinterpreted on the other end. Since the client was created in Python

(see [2,3]) and the server was created in C++, a language independent software package was

essential. One limitation of the current program is that it takes up to 3.2 seconds to acquire the

data from the server for all four channels and another 2 seconds to format it. Although much

has been done to streamline the program as much as possible these times are still relatively

long. A possible improvement to make the client more responsive would be to enable

threading, which would allow for parallel execution of some functions. The client program has

had every possible adjustment made so as to maximize its speed and efficiency.

Conclusion

A graphical user interface has been successfully created and will hopefully be implemented on

the OMEGA laser system in the near future. This program will allow scientists to observe

diagnostic signals throughout the Omega laser facility. Having a convenient program to view

data from multiple oscilloscopes is a useful tool for scientists to visualize and analyze

diagnostic data. The results of this effort can be extended to enable remote viewing and control

of virtually any oscilloscope in the laser system.

References

1. "Manual for Ice." Welcome to ZeroC, the Home of Ice. July 2009. Web. 28 Aug. 2009.
<http://www.zeroc.com/>.

2. Lutz, Mark, and David Ascher. Learning Python, Second Edition. North Mankato: O'Reilly
Media, Inc., 2003. Print.

3. Summerfield, Mark. Rapid GUI Programming with Python and Qt. Prentice Hall, 2007.
Print.

http://www.zeroc.com/

