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Abstract 

 Ultrashort optical pulses are integral to various fields.  Thus, the characterization 

of these pulses is crucial in understanding the results of experiments and applications 

using them.  A diagnostic for laser systems was created to determine the shapes of 

ultrashort optical pulses using the principle of spectral shearing interferometry (SSI).  By 

strongly chirping an optical pulse using a pair of parallel diffraction gratings and mixing 

it in a lithium triborate LiB3O5 (LBO) nonlinear crystal with two test pulse replicas 

delayed by 1.9 ps, sum harmonic generation of the input laser beam was achieved.  The 

SSI interferogram was then characterized by an Ocean Optics Spectrometer using a novel 

“2ω method” to determine pulse characteristics.  The diagnostic was tested on the 

diagnostic compressor of the Multi-TeraWatt (MTW) laser system at the Laboratory for 

Laser Energetics, successfully determining the compressor distance for which the optical 

pulses were shortest. 

 

1.  Introduction 

 Ultrashort optical pulses are widely used in several areas of physics.  Common 

usages are in high-speed optical communications and high-temporal-resolution 

spectroscopy of physical systems. In optical telecommunications, using the shortest 

optical pulses possible allows for the greatest amount of data to be sent in a given period.  

Other usages include high-intensity laser-matter interactions.  Using chirped pulse 

amplification, a short optical pulse can be stretched, amplified, and compressed, 

producing a final short pulse with very high power.1,2  Experimental usages of ultrashort 

optical pulses cannot be deemed accurate unless the shape of the test pulses is as 
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intended.  Thus knowing the temporal shape of optical pulses is crucial to scientific 

research. 

The most significant obstacle to determining the shapes of pulses is that direct 

measurements in the time domain using a photodetector are simply not fast enough, for 

ultrashort pulses are on the order of femtoseconds.  Therefore, measurements must be 

made in the spectral domain and the temporal shape of the pulse must be calculated from 

the data using a Fourier transform.  There are currently three categories of methods used 

to accurately determine the shapes of these pulses, fundamental to physical theories: 

spectrographic, tomographic, and interferometric.3,4  The spectrographic methods are 

most commonly used, with frequency-resolved optical gating (FROG)5, frequency-

domain phase measurements (FDPM)6, and the spectrally and temporally resolved 

upconversion technique (STRUT)7 among the many that require sophisticated data 

inversion techniques and algorithms to reconstruct the electric field.  Tomography, 

though having a noniterative data inversion method8, requires the one-dimensional field 

to be represented in two dimensions, thus increasing greatly the amount of data that must 

be collected.  Interferometric techniques, therefore, are the simplest direct method that 

can be used to characterize optical pulses using properties such as electric field and 

phase, for they only need a one-dimensional data set to model the one-dimensional field, 

and can utilize a simple direct data inversion to determine pulse characteristics.  The 

novel, self-referencing interferometric technique used by Iaconis and Walmsley9, referred 

to as spectral phase interferometry for direct electric-field reconstruction (SPIDER), is 

employed in this study.  This method is particularly popular for its collinear geometry, its 
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lack of moving parts, and its lack of reliance on a fast detector or a well-characterized 

reference pulse.9 

Figure 1.  A setup for ultrashort optical pulse characterization 
using the SPIDER method. 

As shown in Fig. 1, the key to the SPIDER method is splitting the test pulse in 

two, so that one pulse can be split into two identical copies separated by a time delay 

using a Michelson interferometer, for example, and the other can be stretched with a 

dispersive block, for example.  Stretching a pulse chirps it so that its frequency varies 

linearly with time.  Spectral shearing occurs when the chirped pulse and the two identical 

copies of the test pulse are mixed in a sum-frequency generating (SFG) crystal.  The 

spectral shear refers to the difference in optical frequencies represented by the two 

identical copies when overlapped on the chirped pulse after upconversion.  This process 

was utilized, in concept, for the diagnostic created and described in this paper. However, 

key changes were made that allow the device to be more stable, simple, and cost 

effective.  These changes include replacing the Michelson interferometer with an etalon, 

using a grating pair to stretch the pulse rather than a dispersive glass block, and 
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converging the two focused pulse beams with a planoconvex lens instead of a convex 

mirror.  

 

2.  Spectral Shearing Interferometry 

 Since photodetectors were too slow to make direct measurements of ultrashort 

optical pulses, spectral shearing interferometry (SSI) based diagnostics were created so 

that we could indirectly make measurements of the ultrafast pulses using these 

photodetectors.  A commonly-used spectral shearing interferometer is shown in Fig. 2.3  

The interferometer creates two replicas of the test pulse using a beamsplitter.  One beam 

is delayed by a linear spectral phase modulator and the other is frequency shifted by a 

linear temporal phase modulator.  Then, the two pulses are recombined on another 

beamsplitter, allowing the resulting signal to be resolved using a spectrometer.   

 

Figure 2.  An SSI-based interferometer with two parallel phase filters.  

 

 

 

 

 

 

The temporal phase modulator shifts the spectrum of the input pulse by Ω, noted 

in the figure by its response function 

NP
l (t; Ω) = exp[-iΩt]     (1) 
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where N is the nonstationary filter, P indicates that it is a phase-only filter, and l means 

the phase modulation is linear.  Similarly, the linear spectral phase modulator has a 

response function of  

S̃Pl (ω; τ ) = exp[iωτ]      (2) 

which states that the input pulse is delayed by τ.  The signal after the two pulses are 

combined and passed through a spectrometer is 

D(ωc;  Ω, τ) = ∫ dω| S ̃A(ω- ω0)·{[ ∫ dω’ ÑP
l (ω’- ω0) Ẽ(ω’)] + S̃Pl(ω) Ẽ(ω)}|2   (3) 

where the electric fields of the optical pulses are recorded as a function of the filter 

parameters for N and the Fourier transform of the pulse’s output energy, Ẽ(ω), is 

recorded as a function of the filter parameters for S.  Thus, it is also multiplied by the 

amplitude-only time-stationary filter of the spectrometer, S̃A, which was used to resolve  

(ωc) 
Figure 3.  A general spectral interferogram of 
the interference between two spectrally sheared 
pulses. 

D(ωc) 

the signal.  Since the spectral shift and temporal delay are fixed, the signal can be re-

expressed as 
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D(ωc) = |Ẽ(ωc – Ω)|2 + |Ẽ(ωc)|2 + 2|Ẽ(ωc – Ω) Ẽ(ωc)|cos[Φω(ωc – Ω) - Φω(ωc) - τωc].  (4) 

  
where D(ωc) is a standard shearing interferogram as shown in Fig. 3.  

 

3.  Determining the Spectral Phase 

 The spectral phase of the data can be obtained from the interferogram by 

analyzing the relative positions of the fringes which are nominally spaced in frequency 

by 2π/τ as shown in Fig. 3.  This is done by rewriting the interferogram as 

D(ωc) = D(dc)(ωc) + exp[-iτωc]D(-ac)(ωc) + exp[iτωc]D(+ac)(ωc).    (5) 

where 

D(dc)(ωc) = |Ẽ(ωc – Ω)|2 + |Ẽ(ωc)|2.       (6) 

D(-ac)(ωc) = |Ẽ(ωc – Ω) Ẽ(ωc)| exp[i(Φω(ωc – Ω) - Φω(ωc))].   (7) 

and thus 

D(+ac)(ωc) = |Ẽ(ωc – Ω) Ẽ(ωc)| exp[-i(Φω(ωc – Ω) - Φω(ωc))].   (8) 

This rewritten interferogram is Fourier transformed as first shown by Takeda, et al.10 

D̃(t) = FT{D(dc)(ωc); ωc → t}        

+ FT{D(-ac)(ωc); ωc → t + τ}      

+ FT{D(+ac)(ωc); ωc → t – τ}.            (9) 

Fig. 4 shows the Fourier transform of the interferogram.  The dc term centered at 

t=0 is the sum of the two spectra for the pulses, and since having no phase information, 

this is filtered away.  The ac term at –τ is also filtered away because only one ac term, 
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that at t=τ, is needed to generate the spectral phase.  This is accomplished with a fourth-

order super-Gaussian filter, H(t), of full width τ and centered at t=τ: 

D̃(filter)(t) = H(t – τ) D̃(t) = FT{D(+ac)(ωc); ωc → t – τ}.   (10) 

Figure 4.  The Fourier transform of the interferogram in Fig. 3.  The shaded 
region represents the section of the function that is ignored by the filter. 

The desired spectral phase difference is simply the argument of the inverse transform of 

D̃(filter)(t), which is also the isolated ac term is: 

Φω(ωc) - Φω(ωc – Ω) + τωc = arg [D(+ac)(ωc)] = arg [IFT{D̃(filter)(t); t → ωc }].    (11) 

Then the linear phase term τωc must be removed by subtracting a baseline linear phase.  

This baseline linear phase is determined by using an interferometer to record the spectral 

interferogram of the pair of pulses without the spectral shear.  Finally, the spectral phase 

can be reconstructed from the spectral phase difference by concatenation. 

Concatenation returns the spectral phase at intervals of Ω across the spectrum, so 

the spectral phase at some frequency is set equal to zero allowing the spectral phase for 

all frequencies to be multiples of the spectral shear away from ω0.  By adding all the 
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phase differences, the phase for frequencies separated by the spectral shear is 

reconstructed. 

 

4.  Methodology 

 The diagnostic which was built utilizes the SSI method of SPIDER with the 

previously mentioned novel innovations.  The key elements in these innovations, outlined 

in Fig. 5, will be discussed in this section. 

Figure 5.  The SSI diagnostic built for this study.  Labeled are the key elements 
of the diagnostic.  (1) Etalon  (2) Double-pass two-grating compressor  (3) 
Planoconvex Lens  (4) Nonlinear crystal  (5) Ocean Optics Spectrometer. 

 

4.1  Generation of Time-Delayed Replicas Using an Etalon 

 There are two limitations to the value that can be used for the relative delay 

between pulses in the test pair.  The delay, τ, must not be so large that the spectrometer 

cannot resolve the fringes in the interferogram, but not so small that the data inversion 
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routine cannot separate the dc and ac terms.  Therefore, to generate the time-delayed 

replicas, there are two main approaches:  the usage of an interferometer, such as the  

Figure 6.  A Michelson interferometer built during this internship for 
another project.  Solid red arrows indicate transmitted beams through the 
beamsplitters and the dashed arrows represent reflected beams. 

Michelson; or an etalon.  The Michelson interferometer (Fig. 6) utilizes two gold-plated 

beamsplitters: one to divide the incoming test pulse into two arms, one of which has a 

variable distance due to the mounting of a set of perpendicular mirrors on a translation 

stage, and the other to recombine the pulses from the two arms.  One the other hand, the 

etalon is a simple glass microscope slide that reflects ~4% of the incoming light on each 

of its two faces, separated by 0.20 mm.  This delays the reflections from each face in this 

diagnostic by nearly 1.9 picoseconds.  Interferometric accuracy requires stability in τ 

since jitter between the test pulses can destroy phase information.  An etalon is 

unaffected by such vibrations, while a Michelson requires additional stabilization.  The 

etalon is more stable, compact, and less expensive than a Michelson interferometer, 
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which must be carefully aligned and checked before every test due to its numerous 

components.  Therefore, an etalon was used.   

4.2 Generation of the Chirped Pulse 

 The etalon allows ~92% of the incoming light to transmit directly through into 

what is called the double-pass two-grating compressor.  By arranging two diffraction 

gratings parallel to each other so that the diffracted beam of one grating diffracts off the 

other, ultrashort pulses are stretched and chirped.11  The diffraction of the input test pulse 

in the compressor effectively chirps the pulse.  This means that the different frequencies 

of the light are separated so that they arrive in a staggered fashion with respect to one 

another.  The gratings in the device created are ruled with 1200 lines/mm and the second 

order dispersion of the chirped pulse caused by these gratings shifts the phase by a 

stretcher dispersion of Φ’’  = -1.3 ps2.  Therefore, since Ω = -τ / Φ’’, Ω, the spectral 

2 

1 

Input 

Output 

Figure 7.  The input pulse travels along the same path as it exits but at a different 
angle, due to the tilting of mirror #1 (on the left).  This allows the beam to reflect off 
mirror #2 in the bottom right corner, sending the chirped pulse to the output of the 
compressor.  
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separation of the two replicas in the pulses reflected off the etalon after nonlinear 

conversion with the chirped pulse will be 1.45 ps-1, which is roughly a wavelength 

separation of 0.8 nm.  A particularly useful feature of the double-pass two-grating 

compressor created in the diagnostic was the mounting of a mirror on a translation stage 

(mirror #1 on Fig. 7), perpendicular to the beam diffracted by the second diffraction 

grating.  This ensured that the beam was collimated when entering the compressor on the 

second pass and allowed the compressor distance to be changed so that the chirped pulse 

and the sheared replicas would temporally overlap in the nonlinear crystal used for sum 

harmonic generation. 

4.3  Sum Harmonic Generation in a Nonlinear Crystal 

 Before the two replicas of the test pulse and the chirped pulse beam can be mixed 

in the nonlinear crystal they must be focused.  A planoconvex lens with a focal length of 

15 cm was used to focus the two parallel input beams, causing them to intersect in the 

crystal (Fig. 8).  This is particularly significant because when the beam from the 

Figure 8.  The alignment mirrors on the right redirect the chirped pulse beam 
and the replicated pulse beam, making them parallel as they enter the 
planoconvex lens.  The lens focuses the two beams so that they intersect in the 
nonlinear crystal. 



Jay Amin 13 

compressor is overlapped with the beam reflected from the etalon, each of the replicas in 

the reflected beam off the etalon should match up with a distinct frequency on the chirped 

pulse.  Thus, the pulses can be separated temporally by τ and also separated spectrally by 

Ω.  To mix the two signals into one that can be resolved by a spectrometer, they are 

nonlinearly converted.  Though often generalized as sum frequency generation, second 

harmonic generation (SHG) doubles the frequency of the input light source, thus halving 

the wavelength.  Therefore, the Nd:YLF laser source used that operated at 1053 nm was 

effectively converted to 526.5 nm as the frequency changed from ω to 2ω, converting the 

input beam of infrared light to green light. An interferogram in the green is therefore read 

by the spectrometer. 

 The crystal used was a 2 mm biaxial LBO, LiB3O5, which was cut for SHG 

phase-matching at 11.8º.  The Type I SHG caused by this crystal guarantees that the 

ordinary polarized inputs of the chirped pulse and the sheared pulses will create a pulse 

of twice the original frequency.  Both the chirped pulse and sheared pulse beam 

polarizations were aligned with the ordinary axes of the crystal.  The beams were 

carefully overlapped in the crystal temporally by adjusting the path lengths of the 

reflected and transmitted beams from the etalon, and spatially, using the alignment 

mirrors. By carefully adjusting the x- and y-orientation angles of the crystal, SHG was 

optimized to yield a measurable signal. 

4.4  Resolving the Spectral Interferogram 

 A CCD array at the output of a spectrometer can resolve the spectral 

interferogram, once properly calibrated.  The spectrometer used, an Ocean Optics 

HR2000, has a resolution of 0.5 nm at 1053 nm.  Thus it could effectively resolve the 
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fringes separated by 2π/τ, a delay of 1.9 ps.  Fig. 9 is a sample SSI interferogram of the 

upconverted pulses after passing through the diagnostic. 
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Figure 9.  The SSI interferogram from the diagnostic.  The ideal Gaussian shape of 
the pulse is not clearly apparent due to the low resolution of the spectrometer on t
scale, which shows fringe points.  However, the pulse is shown to have been 
effectively upconverted due to the centering on λinput/2, which is 526.5 nm. 

his 

 

The technique created and employed in the capturing of the interferogram was 

aptly dubbed the “2ω method.”  Spectrometers contain a diffraction grating that allows 

the input pulse to have all of its frequencies separated, similar to the chirping of the 

double-pass two-grating compressor in the diagnostic (see Fig. 10).  The properties of the 

diffraction grating can be summarized by the equation 

sin(θi) + sin(θd) = nλ / d    (12) 

where θi is the incidence angle on the grating, θd is the diffracted angle off the grating, n 

is the order of diffraction, λ is the wavelength of the input light, and d is the groove 
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spacing of the diffraction grating.  The unique aspect of this simple equation in the 

operation of the diagnostic is that both the SSI interferogram following nonlinear 

conversion and the spectrum of the pulse under test can be determined by the 

spectrometer without additional calibration.  The quantities d and sin(θi) are constant 

because d is a property of the grating and the incidence angle on the grating will not 

change if the properties of the light source are changed.  At ω, the λ of the input light is 

1053 nm and first-order diffraction occurs.  However, at 2ω, λ is 526.5 nm; therefore, 

second-order diffraction occurs.  Thus, both types of light cause the same diffracted angle 

and can be read directly by the spectrometer.  Each CCD pixel corresponds to a certain 

frequency of light, so even if every frequency in the light pulse is doubled, the pulse 

shape of the output will still be the same when determined by the spectrometer. 

Figure 10.  The schematic for the Ocean Optics HR2000 spectrometer. 

 

5.  Results 

The diagnostic was tested on the Multi-Terawatt (MTW) laser system, a 5 Hz, 

optical parametric chirped-pulse amplifier laser system, capable of delivering >250 mJ of 

energy per pulse. 
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The diagnostic compressor of MTW is similar to the grating pair in the diagnostic 

in that there are two diffraction gratings parallel to each other (Fig. 11); however, the 

diagnostic compressor of MTW is used to create ultrashort pulses, rather than chirp them.  

The diagnostic was set at the output of the diagnostic compressor chamber to measure 

these pulses.  By altering, lengthwise, the position of diffraction grating #2 (on the right 

in Fig. 11), the ultrashort pulses being sent through the laser system were stretched and 

compressed.  The diagnostic was able to determine the distance that would induce the 

most linear phase over the given temporal domain, which would in turn create the ideal 

ultrashort, Gaussian optical pulse.  A reference distance between the gratings was already 

known for creating the shortest pulses and the diagnostic was able to accurately confirm 

this distance, noted as “Reference” in Fig. 12a, b. 

1 2 

Figure 11.  The diagnostic compressor of MTW.  The diffraction gratings are labeled 1 
and 2.  Grating #2 was adjusted longitudinally to determine the best compressor 
distance for creating ideal ultrashort optical pulses.  

 The diagnostic was successful in confirming that the reference distance between  
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the gratings in the diagnostic compressor was the ideal distance for creating the shortest 

pulses.  As Fig. 12a shows, the spectral phase of the measured pulse at the Reference 

distance is most linear over the domain of the pulse’s spectrum.  The greater the 

difference in distance between the gratings from Reference, the more quadratic the 

phases became, indicating that the temporal shapes of these pulses had been stretched and 

their durations increased.  The temporal shapes of the pulses were then determined in 

essence by Fourier transforming the spectral representation of the pulse (i.e. determined 

from the measured optical spectrum and spectral phase). The diagnostic confirms the 

predictions from the phases.  By changing the longitudinal distance between the two 

diffraction gratings by ±1 mm from Reference, the shape of the pulse was effectively 

stretched from 450 ±5 femtoseconds to 1.7 ±0.01 picoseconds, measured as full width at 

half maximum (FWHM), confirming the shapes of the phases and the accuracy of the 

Figure 12a.  The spectral phases of the ultrashort pulses created by changing the 
distance of the diagnostic compressor in MTW.  The reference distance has the most 
linear phase, indicating that the temporal shape of the pulse will be most ideal. 
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Figure 12b.  The SSI interferogram of the pulses from the diagnostic compressor of MTW.  
The “Reference” distance is clearly the ideal distance for the grating compressor.  
Changes of ±1 mm greatly altered the shape of the ultrashort Gaussian pulse by 
temporally stretching its shape. 

diagnostic (Fig. 12b).  Future experiments have been planned to determine the accuracy 

of the diagnostic further. 

 

6.  Discussion 

 The diagnostic was able to accurately perform as planned using the concept of 

spectral shearing interferometry.  The temporal shapes of ultrashort optical pulses were 

determined by characterizing the spectral properties of phase and intensity.   These 

characteristics were determined in a simple, reliable, and noniterative fashion that only 

required the use of two Fourier transforms and no complex algorithms.  Overall, the 
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method required less data than either tomographic or spectrographic techniques and can 

be easily adapted to ultraviolet light sources by downconversion, as well as infrared by 

upconversion.  The diagnostic is self-referencing and has no moving parts and is entirely 

collinear, allowing greater stability and thus, greater reliability.  Relatively thick 

nonlinear crystals can be used in this diagnostic as long as the phase can be reconstructed 

using the spectral fringes and once properly aligned, the spectrometer and nonlinear 

interaction do not need to be recalibrated. 

 This diagnostic will be used to characterize ultrashort optical pulses on various 

laser systems at the Laboratory for Laser Energetics.  The abilities of the diagnostic range 

from general characterization of pulses by determining spectral phase to confirming the 

effectiveness of chirped pulse amplification and compression. 
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