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Abstract: 

Limitations exist on the amount of spectral detail that can be unfolded from multichannel 

spectrometer readings and their known filter response functions. These limitations exist because 

during the process of converting (“folding”) x ray spectra into channel voltage readings, a lot of 

spectral detail and information is inevitably lost. Thus the process of ”unfolding,” inferring a 

spectrum from a set of channel readings and their known response functions, can only recover a 

limited amount of spectral information. The goal of this project was to find out what 

parameterized spectrum model, when used with weighted least squares fitting, recovers the most 

spectral information. Weighted least squares, the method used to unfold the spectra, is a 

parameter estimation technique that finds the model spectrum parameters that are most consistent 

with the readings of the multichannel spectrometer. The multigroup model spectrum, with bin 

widths based on filter function edges, is the most reliable parameterized spectrum model.  

 

1.1 Introduction: 

During a direct drive fusion experiment conducted at the Laboratory for Laser Energetics, 

multiple high power laser beams strike a very small deuterium/tritium target. As a result, this 

target implodes at an exceedingly high velocity and emits x rays of various wavelengths. It is 

very important to study the entire spectrum of x rays emitted. Currently, at the Laboratory, a 

multi-channel spectrometer called Dante is used to analyze the x ray spectrum emitted by the 

imploding target. Dante is able to accurately interpret spectral power. However, Dante provides 

only a limited amount of spectral information. In this report, various “unfolding” algorithms for 

converting Dante measurements into the x ray spectrum emitted by the imploding target will be 

analyzed.  

Dante is an x ray spectrometer  currently used at the Laboratory for Laser Energetics to 

measure the spectra emitted by imploding targets.  Dante is comprised of 19 distinct channels. 

Each channel covers different spectral regions spanning from 50 eV to 20 keV with 20-ps 

resolution. Only 15 channels are used in the following models because these channels have 
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spectral regions pertaining to the photon energies in the simulated LILAC spectra. In each 

channel, x ray radiation passes through a spectrally distinct filter which is opaque to certain 

photons. The remaining photons pass through the filter into an x ray diode, which registers the 

total power of the x ray radiation incident on it as a voltage reading.1 These voltage readings can 

be expressed with the equation:  where the 

spectrum, S( ), is folded into the filter response function, , to give , the voltage 

reading. Here,  is the fraction of the total spectrum captured by the channel, and M is the 

number of channels on the spectrometer, h is Planck’s constant, and ν is the frequency of a 

certain photon in the spectrum. A channel’s sensitivity to certain photons can be characterized by 

its filter response function . 

 
Fig. 1. Dante filter functions 5, 6, and 7 are plotted vs. photon energy. Each channel is sensitive to a specific range 
of photon energies. The location where the filter function turns suddenly opaque to certain photons corresponds to a 
photo-ionization “edge” of the filter material.  

LILAC is a program used at the Laboratory for Laser Energetics that simulates an entire 

target implosion, including the x ray emission, at a series of time steps. The x ray emission is 
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divided into 48 spectral groups. The LILAC simulated x ray spectrum is then folded into the 

Dante channel response functions to obtain the voltage readings. These voltages are then 

unfolded into a spectrum that is compared with the original LILAC spectrum. Various algorithms 

are compared to see which one recovers the most spectral detail with the most accuracy.  

 
Fig. 2. A LILAC simulated spectrum of a target implosion at 3 ns is chosen as an example of hypothetical data. This 
simulated spectrum will be folded into Dante response functions and then unfolded as a fitted spectrum in order to 
illustrate the unfolding algorithm used. 
   

2.1 Methodology:  

The x ray spectra were unfolded using the weighted least squares method.3 In this 

method, the set of parameter estimates  that minimizes   is found, where 

are measured voltage values, are the theoretical voltage values obtained from  the model 

spectrum defined by the parameter estimates, and  are the unavoidable random measurement 

errors in each channel associated with the experiment. The minimum of  is obtained when  

 for all the parameters. This condition is satisfied by the solution to the set of M 
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equations and M unknowns,  

 

Here, one assumes that the spectrum can be modeled as a function of the parameters xk and ti, 

where ti is time. Time is a variable because a spectrum is time dependent, but it is not one of the 

fitting parameters. In other words, f(xk;ti ) is the function which models the spectrum. One can 

use Newton’s method to solve the equations described by the equation above. In this method, 

one iteratively uses nominal parameter values as guesses, in order to obtain corrections to these 

guesses. This iterative process converges to the actual solution. When applying this methodology 

to solve for the zero, one will come up with a system of equations written in matrix notation as 

. Here, J is a square matrix, also known as the coefficient matrix, with length and 

width equal to the number of parameters, and  and r are both column vectors with lengths 

equal to the number of parameters. The quantities J and r are given by: 

 

 

The superscript 0 in  is used to denote the fact that nominal parameter values were used to 

obtain the voltage values. The elements of  contain are the set of corrections that, when added 

to the set of parameter estimates, create a better set of parameter estimates. The set of corrections 

are obtained by multiplying each side of the equation by the matrix inverse of the coefficient 

matrix,  The coefficient matrix is inverted using singular value decomposition as 

described by Press et al.4 This particular method is used in order to minimize the deleterious 

effect of the near singularity of the coefficient matrix. After  is found, new estimates for  

are calculated, which are closer to the actual solution. These corrections become smaller with 

each iteration. This process is repeated until the corrections become negligible. At this 
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point,  and the parameter values are considered to have been solved for all practical 

purposes. This entire process is programmed in Matlab.  

 

2.2 Formal Errors Estimates:  

One of the benefits of using the weighted least squares method is that formal error 

estimates of the parameter estimates, based on the random errors of the experiment, can be 

found.3 The  matrix is also known as the covariance matrix. Its elements are the covariances 

of the parameter estimates between parameter estimates and ;  The angle 

brackets indicate the statistically expected value. The expected error is based on the assumption 

that the voltage errors, , are normally distributed about 0. When j=l, . Thus, one 

can take the square root of the elements on the major diagonal of the covariance matrix to see the 

errors associated with all of the parameter estimates. This is the method used to place error bars 

on the parameter estimates.  

Total spectral power, P, and error,  can also be calculated, as . Total 

spectral power error, , can be found with the equation: 

 

where once again, M is the number of parameters, and  is the variance of parameters k 

and j.  

 

3.1 The Fits:  

The weighted least squares method finds the set of parameter values that minimizes χ2 for 

a particular spectral model. However, this method places no restrictions on the spectral model 

and its parameterization. Well-chosen models will give a more accurate representation of a 

spectrum than other models.  
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3.2 The Polynomial Fit:  

A very popular fit used in many applications of curve fitting is the polynomial fit. In this 

fit, the spectrum is modeled with the equation 

 

where the fitting parameters are an. 

 
Fig. 3. The polynomial fit of the hypothetical spectrum obtained with a 10-parameter fit is shown. Fifteen Dante 
channels were used to unfold the spectrum. 

 

A polynomial does not fit this spectrum well. The narrow spectral lines emitted by an 

imploding target are represented poorly by a smooth polynomial curve. In an attempt to match 

the peaks of the spectrum, artificial curves on the right side of the spectrum were generated. 

Furthermore, one of the major faults of a polynomial fit is the correlation between parameters. 

Correlation occurs when one parameter affects the value of another parameter. In this example, 

the adjustments in any one parameter (any one coefficient an) will strongly affect the fitted 
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values of some of the other parameter values. This correlation was evident in the resulting near-

singular J matrix. The condition number, a number which gives evidence of a near-singular 

matrix,4 was: 2.05*10-70. A completely singular matrix has a condition number of 0. Therefore, 

the coefficient matrix in this example was very close to singular. The inverse was only 

approximated, the true solution could not be obtained, and the fit is not as unambiguous as it 

should be. A polynomial is obviously not a viable fit for this spectrum. 

 

3.3 Spectral Point Fit:  

In the spectral point method, the fitting parameters are the spectral points. Each point can 

move up and down to best fit the voltage readings. Neighboring spectral points are then 

connected with straight lines.  

  

 
Fig. 4. A spectral point fit of the hypothetical spectrum is shown. Spectral points were placed in the middle of each 
filter function sensitivity range. Error bars were generated based on a 10% accuracy in Dante voltage readings.  
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Although the model spectrum is quite accurate, the error bars are very large. This is 

caused by the anti-correlation between the estimates of adjacent spectral points. If one point 

moves upward, re-optimizing the fit of the model spectrum to the voltage readings will push 

surrounding spectral points downward to maintain the quality of the fit of the model spectrum to 

the voltage reading data. Thus, the parameter estimates have some room to move, which 

translates into large error bars.   

Despite the high relative uncertainties in the parameter estimates, the relative uncertainty 

in the power is still quite low. The total spectral power was 5.30*1018ergs/sec, with an estimated 

error of 6.18*1017ergs/sec. This is a relative uncertainty of 11.67%, which is much smaller than 

the error bars in Fig. 4 would suggest. This reflects the strong anti-correlation between the 

parameters. Although not much confidence can be placed on each parameter estimate 

individually, a lot of confidence can be placed on the total spectral power estimate.  

 

3.4 Correlations:   

The largest problem that exists in both the spectral point fit and the polynomial fit is the 

large correlations between the parameter estimates for both models. A large correlation implies 

that a change in any one parameter estimate will drastically affect a different parameter estimate. 

Strong correlations generally impair the quality of the fit by creating a near-singular J matrix, 

which reduces the accuracy of the parameter estimates, which can be seen in the large error bars 

of the spectral point fit. The errors associated with the parameter estimates in this model were 

unacceptable. Finding a set of parameters which are not correlated with one another is vital.  

 

3.5 The multigroup model spectrum:  

One way to reduce the deleterious correlation between parameter estimates is to use a 

multigroup model spectrum, where one divides the entire spectrum into a number of intervals. A 

set of numbers nk are the average spectrum values within each interval k. The different nk 

numbers are the fitting parameters. The edges of the interval will be placed at the edges of the 
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filter functions.2 It is very important to use filter function edges because if a filter has strong 

sensitivity in more than one parameter range, correlation will again present a problem. For 

example, when a filter function has sensitivity in two spectral intervals, the spectral values of the 

two intervals will be strongly anti-correlated with one another. If one parameter estimate 

increases, the other is able to decrease without affecting the overall voltage reading of the 

channel. By using filter function edges as interval boundaries, this anti-correlation will be 

minimized.  

3.6 The “flat-top” multigroup model spectrum:  

A “flat-top” multigroup model spectrum is the simplest multigroup spectrum. In each 

interval, there is only one spectrum value. Thus, each interval will have a “flat-top”.  

 

 
Fig. 5. A sample of the flat-top multigroup model spectrum with 13 intervals is shown. Error bars were generated 
based on a 10% accuracy in the voltage readings. Intervals were determined by the Dante filter function edges.  
 

The “flat-top” multigroup model spectrum consistently models the general shape of the 
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actual spectrum. The error bars are also much smaller. However, almost no spectral detail is 

apparent in the model. 

This model also minimizes spectral power uncertainty, which is estimated to be 5.07*1018 

ergs/sec, with a relative uncertainty in the spectral power of only 4.13%. 

 

3.7 The “spectrum-top” multigroup model spectrum:  

It is possible to use an expected spectrum as a guide when trying to fit Dante voltage 

readings. In this case, apparent detail in the fitted model spectrum that was not contained in the 

individual voltage readings is shown. This fit is an extension of the flat top model. Here, instead 

of using one average spectrum value in each interval as in the flat-top model, the form of the 

anticipated spectrum is retained within each interval. For this fit, an initial nominal guess of what 

the spectrum might possibly look like is needed. This nominal guess could be obtained from a 

LILAC simulation, for example, which has been done here. This nominal spectrum is broken up 

into several intervals and a multiplying factor nk is added to the spectrum value in interval k as 

the adjustable model parameter.  

This model spectrum fit shown in Fig. 6 is a very accurate representation of the spectrum. 

Almost all of the spectral detail has been artificially restored. This is not surprising, given that 

the shape of the model spectrum within each interval and the hypothetical voltage readings are 

obtained from the same LILAC-simulated spectrum. However, the relative uncertainties on each 

parameter are still quite large. This shows that errors are independent of how well the model 

spectrum fits the simulated spectrum.  
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Fig. 6. A sample of a fit using the spectrum-top multigroup model spectrum with 13 intervals. Error bars were 
generated based on a 10% accuracy in the voltage readings. The LILAC simulation at 3 ns was folded into voltage 
readings and the simulated x ray spectrum at 2.98 ns was used as the nominal spectrum. Together, the voltages and 
the nominal spectrum were used to create the model. 
 

The total model spectral power in this example was 5.42*1018 ergs/sec and the relative 

error was 3.87%. This small uncertainty in the estimate of the total power results from a 10% 

uncertainty in all of the voltage readings. Fifteen channels were used to estimate the total spectral 

power. According to the central limit theorem, one would expect  for n uncorrelated 

parameter estimates. Thus, the error in the total spectral power should approach  or 2.58% if 

the spectral model minimizes correlations, which it does. This verifies the methodology behind 

calculating the spectral power uncertainty.  

 

4.1 Discussion  

In the previous example of the spectrum-top multigroup model, the nominal spectrum 

happened to be very accurate. However, if the nominal spectrum is not accurate, it could force 
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the model spectrum to take a shape that does not resemble the actual spectrum. In this case, the 

“flat-top” multigroup model spectrum may be a better fit.  

 
Fig. 7. LILAC spectra at 4.68 ns and 4.7 ns are shown.  The spectrum at 4.7 ns is used as hypothetical data, and the 
spectrum at 4.68 ns is used to assign the shape of the fitting model spectrum within each spectral segment. 
 

The spectrum at 4.68 ns is similar to the spectrum at 4.7 ns, but the peaks are shifted with 

respect to each other, as is shown in Fig. 7. The multigroup fitting process can only shift the 

model spectral values within their respective fixed spectral intervals, and the interval widths and 

positions are fixed. Thus, this model has a very difficult time predicting the shape of the 

spectrum.    
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Fig. 8. A sample of the spectrum-top multigroup model spectrum fit with 13 intervals is shown. Error bars were 
generated based on a 10% accuracy in the voltage readings. The nominal spectrum was a LILAC simulated x-ray 
spectrum at 4.68 ns. Intervals were determined by Dante filter function edges. 
 

In an attempt to fit the spectrum at 4.7 ns with the nominal spectrum at 4.68 ns, spurious 

spectral detail was created, as can be seen in Fig. 8. The program attempted to fit the behavior of 

the spectrum at higher photon energies with the nominal spectrum. As a result, the spectral peak 

at around 300 eV is mangled. In this example, the attempt to recover more spectral detail by 

anticipating it has reduced the reliability of the fit. A “flat top” model fit shown in Fig. 9 appears 

to recover less spectral detail, but is less vulnerable to the hazard of making poor nominal 

guesses. The “flat top” model is more reliable, in the sense that it does not create spectral 

information that does not exist in the first place. In addition, it still creates a fairly good 

representation of the spectrum.  
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Fig. 9. A sample of the flat-top multigroup model spectrum fit with 13 intervals is shown. Error bars were generated 
based on a 10% accuracy in the voltage readings. Intervals were determined by Dante filter function edges.  
  

When little confidence can be placed in the nominal spectrum, the “flat top” spectrum 

should be used because it is more reliable and will not create irrelevant spectral detail. However, 

if a lot of confidence can be placed in the “spectrum top” model, then the “spectrum top” model 

should be used because the spectral detail will be maintained. 

 

5.1 Conclusion:  

The weighted least squares method has been used to unfold x ray spectra obtained from 

simulated multi-channel spectrometer data using LILAC simulated spectra from laser-irradiated 

targets. The spectra emitted from these targets have been modeled with 15 parameters within 4 

distinct modeling methods: the polynomial fit, the spectral point fit, the “flat top” multigroup 

model spectrum fit, and the “spectral top” multigroup model spectrum fit. Each model utilizes 

the weighted least squares method to fit its parameters. The polynomial fit is able to capture the 
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basic curvature of the spectrum. However, this fit is crippled by correlation between parameter 

estimates. Furthermore, the shapes of polynomial functions are not characteristic of spectra. The 

spectral point model also introduces correlations that deleteriously affect the reliability of this fit. 

Formal estimates of the parameter variances reveal unreliability in the parameter estimates. The 

last two fits used multigroup models. This multigroup model divides the spectrum into groups 

based on filter function edges. These fits eliminate much of the correlation between parameter 

estimates. The “flat top” multigroup model is able to consistently capture the essential shape of 

the spectrum. The “spectrum top” multigroup model allows the user to enter a nominal spectrum 

and produces a good fit if the spectral detail can be anticipated with confidence. This model 

introduces artificial spectral detail if the first guess is not good enough. Only when confidence 

can be placed in the nominal spectrum can confidence be also placed in the “spectrum top” 

multigroup model. Otherwise, the more modest flat top multigroup model should be used.  
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