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Abstract  

The motion and distribution of electrons in the plasma in the fast-ignition scenario 

are defined by three equations that describe the spread in the direction of motion 

(straggling), the spread in the direction perpendicular to the motion (blooming), and the 

amount of energy lost as the electron travels through the plasma. A program was written 

that models the distribution of the electrons in the plasma and tracks their energy 

deposition. This model treats the beam of electrons as many parallel beams of 

infinitesimal width that move in a straight line. When the blooming or straggling exceeds 

a certain value, each beam of electrons is split into multiple beams of different weights. 

The model was found to require exponentially more time and memory for greater degrees 

of accuracy and to be sensitive to small adjustments in the splitting algorithm. The results 

of this model applied to a test problem were found to be very similar to the analytic 

predictions, with errors ranging from ~2% to 11%. 

 

Introduction 

In conventional inertial confinement fusion, ignition occurs when one of the 

fusion products (alpha particles) created in a central hot-spot are stopped in the high 

density, cold fuel, causing a propagating burn. A proposed alternative ignition method, 

known as “fast ignition”, is to heat a part of the high density, cold fuel with a beam of 

relativistic electrons created by focusing a high-intensity laser into the target. The 

transport of these electrons is currently carried out with a straight-line model in which the 

electrons do not deviate from straight-line trajectories. In reality, the electrons undergo 
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straggling (different penetration depths) and blooming (spreading of the beam) because 

of collisions with the background plasma. 

 This report describes a mathematical model and how it is applied within the 

straight-line algorithm. The results are then compared to the predictions of the analytic 

computations done by Li and Petrasso.1 

 

Mathematical model 

In this report we describe a method for accounting for straggling and blooming within 

the constraint of the existing straight-line model. As the electron beam travels through the 

target, the electrons collide with the plasma, depositing their energy, and changing their 

directions. This is described by the following expression2, which is used in the existing model: 
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where r0 is the classical electron radius, m0, the electron mass, c, the speed of light, ni, the 

background ion density, Z, the background average ion charge, Te, the background electron 

temperature, k, the Boltzmann constant, γ, the relativistic energy divided by m0c2 and β, the 

relativistic velocity. This equation determines the amount of energy (dE) lost per distance the 

electron traveled (ds), but the distance traveled and distance penetrated are not the same 

because the electrons do not follow straight paths. Previous models have accounted for the 

discrepancy between the trajectory and the penetration distance by using the equation, 

dE
dx

= cosθ −1 dE
ds

 where dx is the penetration and cosθ  is the average deviation angle from 

the straight line given by1 
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and ln Λei is the Coulomb logarithm. 

 Blooming and straggling have been added to the existing model using expressions 

from Ref. 1. Blooming is the deviation perpendicular to the initial direction of movement 

and is described by        

  y 2 =
2
3

P1 cosθ( ) dE ′
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Straggling is the deviation parallel to the initial motion and is given by 

x 2 =
2
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 where P1 cosθ( )  and P2 cosθ( )  are Legendre polynomials.  

 

 

Procedure 

 A program was written to model the energy deposition of a beam of electrons into 

a target. While the program can model a target with non-uniform density and 

temperature, it was tested by modeling a uniform two-dimensional slab with a density of 

300 g/cm3 and a temperature of 500 eV, for which an analytical solution is known1. A 
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rectangular grid is used. The beam of electrons is modeled as many beamlets of 

infinitesimal width, which will be referred to as “beams” for simplicity. As each beam 

travels through the target, the energy deposited is calculated for each grid square it passes 

through. Thus, while the beams are treated as infinitesimal, the energy deposited is only 

accurate to the resolution of the grid. The spread of the beam is also calculated in both the 

blooming and straggling directions for each zone in the grid. That spread is summed over 

the trajectory and when it exceeds a certain level, which is a parameter of the model, the 

beam is split into multiple beams to represent the spread. The daughter beams have the 

same energy and direction, but represent different amounts of electrons. This method is 

illustrated in Figure 1. 

The most efficient and accurate method was to split the electron beam into three 

daughter beams each time a split was required. Any more splitting produced too many 

beams, requiring too large a memory space, and having only two daughter beams 

required more splits, which again led to too many beams. The weights and distance 

between the beams were calculated so that the distribution of the beams stayed Gaussian 

with the correct standard deviation, obtained from Ref. 1. At each split the standard 

deviation of the set of beams was set so that it was halfway between the current deviation 

and what it would be next time the beams split. While this procedure leads to 

overestimation of the deviation right after the split, it averages out and does not 

consistently overestimate or underestimate the deviation for both straggling and 

blooming. The weights given to the beams were 57% of the electrons in the center 

daughter beam, and 21.5% for each of the off-center daughter beams, which were offset 
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by 1.325 standard deviations. This was found to keep the distribution relatively Gaussian 

without requiring too many splits. 

 These daughter beams were then transported into the target until their spread 

exceeded the maximum level, in which case they were again split. They were finally 

stopped when their energy was negligible compared to the temperature of the target, at 

which point their remaining energy was deposited in the current grid space. 

 

Results 

 The results of this model are compared with those predicted by the analytic model 

of Li and Petrasso1 in Fig.  2.  Plotted are the differences between the two models in the 

average penetration distance (Fig. 2a) and in the final root-mean-square deviations in the 

x direction (straggling, Fig. 2b) and the y direction (blooming, Fig. 2c), for increasing 

source energy. The average distance is modeled very closely, with errors ranging from 

–2% to 1% over a range of energies. The problem was modeled with various sets of 

parameters (such as the distance moved between splits, the distance moved during the 

splits, and the width of the initial beam).  The results for straggling and blooming, shown 

with yellow lines in Figs. 2b and 2c, are for the best set of parameters and show small 

deviations from the Li and Petrasso predictions (ranging from -8% to 11%). Depending 

on when the beams were split, the model could either overestimate or underestimate these 

values at the end of the simulation. An example is shown in the dark red lines for which 

the errors range from –23% to –8%. 

The difference between the predictions of two different runs of the model for the 

energy deposited is shown in Fig. 3 for a 10-μm beam centered at 30 μm. Figure 3a 
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shows the difference when the blooming parameter is changed. Most of the differences 

are at the beam edges where the modeling of the blooming is more sensitive. The 

difference when the straggling parameter is changed is illustrated in Fig. 3b. In both cases 

the largest error is close to the source before the first split of the beamlets. In the bulk of 

the target the differences are about 10% or lower. These results show that the 

computational model provides a fairly accurate treatment of the propagation of the beam. 

 

Future Work 

 The program could be improved upon in two different ways. Currently there is 

only one thread doing all the computations for the model, but the computations could be 

done in parallel. This could easily make the program many times faster. Another 

improvement to the program would be to reconsolidate the beams after a few splits. After 

about 6 splits there are 729 different beamlets; the calculation could be stopped at some 

stage and the beamlets in close spatial proximity could be combined. With recombining 

we could split more often than before, without having more beams at once. This is 

important because the number of beams is limited by the amount of available memory. 

Thus with recombining we could represent a smoother distribution with fewer beams, and 

not run out of memory. Using fewer beams would also speed up the model by requiring 

fewer computations. 

 

Conclusions 

 An improved straight-line model, which includes straggling and blooming, has 

been developed to model the transport of relativistic electrons in the fast-ignition scheme. 
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In this model, after the electrons have accumulated a certain amount of straggling or 

blooming during their trajectory, they are split into three electrons. The direction and 

energy of each electron is chosen so as to provide the straggling and blooming predicted 

by analytic predictions such as those of Li and Petrasso. This model agrees with the 

analytic model within ~10% for the energy deposited, for a wide range of initial electron 

energies. 
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Figure 1. Diagram showing how an electron beamlet is split for blooming or straggling.  
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Figure 2. Differences between Li and Petrasso’s predictions and those of the model for 

various source energies: a) average penetration; b) straggling; c) blooming. The yellow 

lines are for the best set of parameters; the dark red line is for another set. 
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Figure 3. Fractional differences in energy deposition of the model for a 10-μm beam 

centered at 30 μm, between two different trials. In a) the two runs compared had different 

blooming parameters, and in b) they had different straggling parameters. 
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