
Hexapod Motion Through Remote Computer Activation

Joseph Dudek

Hexapod Motion Through Remote Computer Activation

Joseph Dudek
Laboratory for Laser Energetics

University of Rochester

August 2, 2004

Abstract

This paper describes the creation of software
for a motorized platform known as a 'hexapod'.
This mechanism will be used to move a
parabolic mirror in all 6 degrees of freedom (3
translational, 3 rotational) to focus an ultra-fast
laser beam for experiments. The mathematics
behind multiple coordinate systems, matrix
mathematics, and vector calculations were used
to develop algorithms for the movement of the
hexapod. As a part of my implementation, I
used both the C programming language and the
Javam programming language created by Sun
Microsystems.

Outline

1 Introduction
1.1 Hexapod Platform
1.2 Hexapod Driver Unit and Protocol

2 Mathematics
2.1 Managing Coordinate Systems
2.2 Utilizing Coordinate Translations

3 Computer Programming
3.1 The C Programming Language
3.2 Code Design and Implementation

3.2.1 RClient
3.2.2 Responder
3.2.3 RCalc
3.2.4 RSerial

4 Conclusion
5 Acknowledgements

Appendix A: Vector and Matrix Operations

Figures

1 .I The Hexapod Platform
1.2 The Actuator
2.1 Vector Addition
2.2 Projections Establishing Coordinates
2.3 Hexapod Coordinate System Unit Vectors

1 Introduction

In order to adequately maneuver a platform using six degrees of freedom, a
hexapod platform i s an attractive option. This small, portable machinery
consists of two circular plates and six longitudinally expandable and
contractible arms. By properly calculating the necessary lengths of each of the
six arms, any rotation or translation of the upper platform (within accepted
limits) may be accomplished. The ultimate goal of this algorithmic project is
to manipulate a hexapod platform using a driver interface and a computer
program.

1.1 Hexapod Platform

Figure 1.1
The Hexapod Platform

The hexapod itself (as seen in Fig. I . I) is a platform structure comprised of
two circular discs connected by six motorized actuators. The six actuators
on the hexapod form consecutive triangles around the outside of the
structure contacting each plate in three locations. As three points
successfully define a plane, this method maintains stability with the
geometric triangle and also needs only linear actuator motion to achieve
motion in all 6 degrees of .freedom of the upper disc.

Figure I .2
The Actuator

The motorized actuators are what provide the hexapod with extreme
accuracy and flexibility. The hexapod's six actuators act as both support
for the upper platform and a means for movement. Motion is achieved
through the use of universal joints located at either end of the actuator.
These joints allow for freedom of movement to extremely wide angles.
Since the hexapod's functionality depends heavily on its flexibility, these
joints are vital to the mechanism. Each actuator also contains a stepper
motor that had one step equal to 3.580 pm and is activated via a control
module located at the bottom of the hexapod. (Figure 1.1) The stepper
motor mobilizes a shaft that leads out to one of the universal joints on the
actuator. (Figure 1.2)

1.2 Hexapod Driver Unit and Protocol

Provided for this project was a custom driver unit created by Jean DePatie.
This driver utilized a serial port to receive commands for the hexapod's
actuators. This function utilized a rudimentary string function where the
first two characters defined the actuator, the next character defined the
course of action, and the final accepted character or series of characters
represented a value for the function.

Function

H

V

P

S

Definition

Set Home
Position

Set Velocity

Move to
Position ...

Report
Status

Execution

Creates a zero position some
distance above the home switch

(steps)
Sets the velocity of the stepper

motors (stepslsecond)

Moves the stepper motors to a
numerical position (steps)

Returns a string with the current
position of the motor requested

(steps)

2 Mathematics

The mathematics used for this project achieved a relatively complex
solution by combining more basic equations and functions. Given the goal
of accomplishing six degrees of freedom and the known constraint of
longitudinal motion, the most effective method of computation seemed to
be using two coordinate systems. With one system at the base and another
atop the plate, vectors and locations could be simply translated between
the two, thus separating the rotation and translation aspect from the
calculation of new arm lengths.

2.1 Managing Coordinate Systems

I- t.,

I I

Figure 2.1 Figure 2.2
Vector Addition Projections Establishing Coordinates

In the case of this particular project, vectors were used as a means of
translating coordinates between different coordinate systems. The
hexapod must be considered to have two different sets of coordinate
systems that must each be accounted for at all times. The lower,
stationary platform (base) must keep track of the locations of all the parts
of the hexapod as it i s the only stationary point of reference. Also, the
upper, mobile platform (plate) must retain i t s own coordinate system.
Instead of constantly updating both sets of information, vector math i s
utilized to translate base information into the plate coordinate system, the
movement i s executed in the plate system, and the new coordinates are
translated back into the base system. This way only the base coordinates
must be retained from one movement to the next.

Vector mathematics tells us that the three vectors in Figure 2.1 are related
by the equation R1 -RO=RI '. This means that i f a vector to the origin of the
plate coordinate system(vector RO) and a vector to the point of .interest
were known(vector RI), the vector to the point of interest i n the plate
system would be a simple calculation away(vector R1 '). Additionally, the
magnitudes of the projections of the translated vector R1' onto the axis
vectors of the plate system wil l create coordinates of the vector in the
global system. While the demonstration above handles only two
dimensional examples, this concept translates to three dimensions quite
easily.

X axis

Figure 2.3
Hexapod Coordinate System Unit Vectors

Establishing the axes for translation was relatively straightforward. First,
a set of axes was established at the center of the six upper universal
joints. As seen in Figure 2.3, i f the vectors from the center of the plane to
Joint 0 and Joint 5 are added together, an x-axis is created. Additionally,
i f the vector to Joint 4 is subtracted from the vector to Joint 1, a y-axis is
created. The cross-product of the x- and y-axes creates an orthogonal
vector which becomes the z-axis. The z-axis is then elevated to
compensate for the distance between the universal joints and the plate
itself.

2.2 Util izing Coordinate Translations

With coordinate system translations proven as an executable function, the
ideas mentioned above car) be put to use. All of the universal joints on the
hexapod were tracked in the global coordinate system, here the base, and
this data was stored. Whenever a user requests a rotation of the upper
plate, the upper joints would be translated into the plate's perspective,
thus allowing a rotation using basic rotation matrices. With the new joint
locations calculated, they would be translated back into the global system
and the new leg lengths would be calculated. At that point, it was just a
matter of executing the movements on the hexapod.

3 Computer Programming

The primary goal of this project was not to verify a method of mobilizing the
hexapod, but rather to create a fully functional computer program. Because
of this, the architecture of this program must be discussed. This section wil l
cover the programming language, target operating system, program design,
and implementation.

3.1 The C Programm,ing Language

The C Programming Language was developed in the early 1970's by Ken
Thompson and Dennis Ritchie for their LlNlX operating system. C has since
spread to many other operating systems and builds and has become one of
the most popular languages in the world. C is best known for its
efficiency, one of the major reasons it was chosen for this project. C also
runs several files as though they were one long program file, making long
code seem simple as it is condensed into one executable file.

3.2 Code Design and Implementation

R Client
(Language Independent)

Figure 3.1
Overview of Hexapod Computer Model

In order to fulf i l l the requirements for the programming portion of the
project, several programs were designed to work in tandem, each
performing a unique function and passing its results to the next program in
Line. The four components used in this particular design are RClient, a
remote access program, Responder, a receiver protocol, RCalc, the
calculator and translator, and RSerial, the utility that sends messages
through the serial port to the driver unit. Each of these programs are
connected through different types of sockets established upon execution
and must be initialized from the bottom up.

3.2.1 RSerial

This program was designed specifically for communication over a serial
port. I t first converts leg lengths given by RCalc into 'steps'. Steps are
3.850 micrometer lengths which the stepper motor recognizes as a unit
of measurement. Once the distances have been converted, this
program creates messages that the driver unit can understand. With
that step complete, the strings are then transmitted across the serial
port and a confirmation message is received following the message.
The goal for the program series is to be able to interpret the messages
received from the driver hardware and react accordingly, but that
function has not yet been added to the software.

3.2.2 RCalc

The first segment of code that was created was the basic functionality
required to use vector mathematics, rotational matrices, and other
utility functions. Fortunately, the coding for these segments became
rudimentary, as the coding was simply copying pre-defined equations
into usable methods. Each matrix equation designed to interact with a
vector or another matrix was designed only to handle vectors with
three data segments and 3x3 matrices. While this restricts the
reusability of the code, it was necessary to improve efficiency in this
project.

The protocol for establishing several coordinate systems and translating
between them was then established. Using sample universal joint
coordinates, an intermediate coordinate system is set up during
translation. That coordinate system exists as an average of the
locations of all of the upper universal joints establishing the angle
necessary to compensate for any previous platform adjustment. The
axes are then created according to a preset system of equations (see
Section 2.2). By increasing the position of the origin a constant number
of millimeters up the z-axis, the coordinate system has now been
transformed into the system at the center of the plate. The correct
translation or rotation is then executed and the coordinate system is
then translated back to the global position.

In accomplishing the above changes in coordinate systems, the
methodology used is not to identify the coordinate system totally, but
rather to edit the vectors to the universal joints so that they represent
vectors from a different perspective. For example, the translation
from the center of the upper universal joints to the center of the plate
is, i n reality, a subtraction from the z values of each of the vectors. In
addition, translating back to the global position is merely adding a
vector from the global origin to the plate origin to each of the universal
joints' positions and using the stored axis vectors for the plate system
to rotate back to vertical.

With the translation complete, taking a simple measurement of each of
the arms, subtracting the length of a collapsed arm, and dividing by
the distance in one motor step (3.580 pm) wil l establish a position
number for that arm. This position is then forwarded to the serial port
through a program entitled RSerial.

3.2.3 Responder

Responder was simply an intermediate between RClient and RCalc. I t
had to establish two different types of sockets, one to the network to
receive messages from RClient and one to RCalc to transmit messages.
No processing occurred in this module, but the information received
was translated into a message that was then just passed down through
the line. This program is run from a small LlNUX computer situated
near the hexapod platform. This I-INUX computer has an Ethernet port
allowing remote access from anywhere on the LLE network.

3.2.4 RClient

One of the most important facets of the coding for this project was
remote access. The computer running this platform does not have
input functionality besides a couple of Ethernet ports and three serial
ports. Using a keyboard or mouse, therefore, is impossible. The
computer wil l also exist inside the laser bay meaning that anything that
can keep personnel away from the unit wil l be helpful. The code,
therefore, is designed to execute upon a command from an outside
program. RClient acts as a user client and allows a user to give the
platform commands from any distance away so long as the user has
access to the local network. This program does nothing more than
forward commands over the network to Responder.

4 Conclusion

Manipulation of a six-legged platform requires both vector and matrix
mathematics working through a computer interface. This interface has been
created as a part of my project at the LLE and is ready for implementation in
the Omega EP Laser system.

In order to use the program to its fullest functionality, a much more accurate
method of measuring the locations of the universal joints on the mechanism
with respect to the center of the base must be found. Withol~t this
measurement, any calculations made by the program wil l be based on
estimated numbers creating a significant amount of error. In addition, a more
user-friendly client interface must be created to allow use from the control
room by average personnel. Lastly, the positions of the arms must be logged
to external files allowing the program to cope with a loss of power or a fatal
error.

5 Acknowledgements

This project was facilitated by a High School Summer Intern program at the
University of Rochester Laboratory for Laser Energetics. Dr. R. S. Craxton was
the program supervisor and I was supervised individually by Dr. Christian
Stoeckl. The driver unit for the hexapod was created and programmed by
Jean DePatie and I owe each of my peers in the program for their ideas and
support.

Appendix A: Vector and Matrix Operations

.-l x I3 = det .-iY .4
,r

Bx 6 5

