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Abstract: The Rayleigh-Taylor instability exists at the interface 
of two fluids with diffe'rent densities when the acceleration is 
pointing from the light fluid to the heavy one. It produces 
important effects in inertial confinement fusion (ICF). In order to 
understand more about the Rayleigh-Taylor instability, it is 
helpful to calculate the rates at which the perturbations grow at 
the interface. Assuming that the fluids are incompressible, using 
a variational method gives approximate growth rates for different 
density profiles. Growth rates are obtained using this method in a 
Fortran program and are compared with exact results calculated 
by integrating the Rayleigh equation in another Fortran program. 
The variational method is shown to be effective in solving for 
linear growth rates of the Rayleigh-Taylor instability. 

I. INTRODUCTION: 

If one looks up in a dictionary, he will find the word "instability" being 

defined as "the quality or condition of being erratic or undependable." The physical 

concept of the Rayleigh-Taylor instability is a kind of instability as well. It exists at the 

interface of two fluids with different densities when the acceleration is pointing from the 

light fluid to the heavy fluid. It exists in everyday life, as illustrated in the example 

between oil and water. 

In Fig.1, we have oil, the light fluid, on top of water, the heavy fluid. The 

perturbations exist at the interface. They are under the condition in which gravity pulls 



down, which is equivalent to the fluid being accelerated upward. In Fig.2, we still have 

Fig. 1 

With gravity pulling down, which is equivalent to the fluid being accelerated 
upward, the state of oil on top of water is stable. The perturbations oscillate. 

water on top of oil with perturbations existing. The condition does not change much, 

because this is a stable state. The perturbations oscillate. 

With gravity pulling down, meaning the acceleration going up, the state of water on 
top of oil is unstable. The perturbations grow exponentially with respect to time. 

However, in Fig.3, water, the heavy fluid, is now on top of oil, the light 

fluid. With acceleration going up, it becomes unstable. The perturbations will not 

oscillate; rather, they will grow exponentially with respect to time. From Fig.3, Fig.4, to 

Fig.5, the perturbations have grown from little ripples to huge bubbles and spikes. 

Eventually, the perturbations will grow big enough that they will bring down the heavy 

fluid to exchange places with the light fluid. The water and oil will switch places and this 

unstable state will become a stable state as in Fig.1 and Fig.2 again. The unstable state 

described from Fig.3 to Fig.5 is called the Rayleigh-Taylor instability. 



In the cases where I am going to solve for growth rates, the linear 

approximation is assumed to apply. The amplitudes of the perturbations are small 

compared to the wavelengths of the perturbations. In addition, ripples are assumed to 

vary sinusoidally across a planar interface. 

11. IMPORTANCE: 

The Rayleigh-Taylor instability is important to Inertial Confinement Fusion. 

The fusion process is a nuclear reaction, which scientists hope to apply to the generation 

of energy. In this reaction, deuterium and tritium, two isotopes of hydrogen, react to 

produce one helium nucleus, one neutron, and 17.6MeV energy: 

ZH + 3H --> 4He + ~ n +  17.6MeV 

Two requirements for the fusion process are high temperature and high pressure. 

Scientists at the Laboratory for Laser Energetics shine laser beams onto a fuel target to 

help to create these two conditions. 

Fig.6 shows a representative target. It consists of a thin plastic shell, a layer 

of deuterium and tritium ice fuel, and the core of deuterium and tritium gas fuel. When 

the laser begins to shine on the surface of the target, the plastic shell ablates. Vaporizing 

plastic accelerates outwardly, and this outward acceleration creates an inward 

acceleration, according to Newton's Third Law. In this acceleration phase, the interface 

becomes unstable due to the density difference between the ablated plastic shell and the 

plastic shell, with acceleration pointing from the expanding plastic vapor, the light fluid, 

to the solid plastic shell, the heavy fluid. The Rayleigh-Taylor instability exists here. 

When the target is compressed small enough to create relatively high 

pressure inside the core, the target enters its deceleration phase. Reversing the direction 

of the acceleration, the interface between the ablated plastic shell vapor and the plastic 

shell becomes stable while the interface between the deuterium and tritium ice fuel and 

deuterium and tritium gas fuel becomes unstable. The Rayleigh-Taylor instability causes 



the perturbations to grow at this interface. When the perturbations grow, they will bring 

the deuterium and tritium ice fuel, which is relatively cool, into the deuterium and tritium 

DT ice 

Fig.6: A target consists of a thin plastic shell, deuterium and tritium ice fuel, and 
deuterium and tritium gas fuel. 1)uring the acceleration phase, the Rayleigh-Taylor 
instability exists at the interface between the ablating plastic shell and the solid 
plastic shell. During the deceleration phase, it exists between the deuterium and 
tritium ice fuel and the deuterium and tritium gas fuel. 

gas fuel to cool down the inner core. As a result, the high temperature requirement may 

not be met, and the fusion process may then not take place. In order to avoid this, 

scientists study the Rayleigh-Taylor jnstability, hoping to control the perturbations so that 

they will not grow big enough to ruin the fusion process. Thus, knowing the growth rates 

becomes important. 

111. SOLUTIONS: 

1. Exact Integration: 

In order to solve for the exact growth rates, we use the Rayleigh equation: 

d/dz(pdw/dz) - pk2w + (k2&)(dp/dz)w = 0. 

The Rayleigh equation is obtained from the physical theories of Newton's Second Law 

and the Conservation of   ass.' In addition, boundary conditions are imposed, i.e. dw/dz 

= +kw, which imposes exponentially decaying behavior at the left and right boundaries of 

the problem, respectively, where dpldz = 0. This equation works for incompressible 



fluids in a planar geometry. The variable z represents the position along the direction of 

acceleration, normal to the fluid interface, and p is the mass density at that point z. The 

constant k is the wave number; it equals to 2n divided by the wavelength (A) of the 

perturbation. g is the acceleration of the fluids. The w(z) function and the parameter y 

are the two things to be solved for. w(z) is the distribution of the z component of the 

perturbation velocity with respect to the z coordinate, and y is the growth rate, which 

describes how fast the perturbations grow. For this equation, the assumed time 

dependence of the perturbation consists of a growth factor of eYt. The linear 

approximation applies to the perturbations to be solved for. 

The Rayleigh equation is one example of a Liouville equation. According to 

the Sturm-Liouville Theory, for every eigenvalue, there will be an eigenfunction that 

satisfies the equation. In the Rayleigh equation, w(z) is the eigenfunction and the 

dimensionless quantity r = +/kg is the eigenvalue. Another useful quantity in the 

mathematical manipulation is the dimensionless distance coordinate x = kz. Among all 

the possible eigenvalues and their corresponding eigenfunctions, my goal is to focus on 

the largest eigenvalue and the corresponding eigenfunction. That means there are many 

different possible perturbation velocity distributions in an unstable state, but the most 

important one is the one with the biggest growth rate. Since it grows the fastest, it has the 

biggest potential to destroy a fusion implosion. Therefore, we are looking for the largest 

value for r .  

The shooting method is used in the exact integration for different density 

profiles. Boundary conditions are supplied for the problem. After guessing r, w(z) is 

evaluated, and the eigenfunction is checked to see if it satisfies the boundary conditions. 

If they are not satisfied, the calculation is iterated, adjusting the eigenvalue and repeating 

the integration. This sequence is repeated until the boundary conditions are satisfied, 

indicating that the right eigenvalue and its corresponding eigenfunction have been found. 

This exact integration of the Rayleigh equation works well for almost any 

density profile if the boundary conclitions are provided. But if the boundary conditions 

cannot be easily defined, or if many iterations would be too time-consuming, what should 



we do? In these situations, scientists will choose an approximate method over an exact 

integration. 

2. The variational method: 

The variational method is a standard approximate method. The goal for my 

project is to test this method to see if it works well with several density profiles that are 

Rayleigh-Taylor unstable. For this method, we guess a trial function for the 

eigenfunction w(z) first. The trial function I used for w is w = e-JX'XoI as has been 

suggested by ~ i k a e l i a n . ~  The density scale length is used here as an estimate of its 

center. The density scale length L equals p/(dp/dz). A common rule is that this density 

scale length is a minimum where the eigenfunction will be centered. This rule is used to 

estimate xo, the center of the trial eigenfunction. This function decays exponentially far 

from x = xo, and no further boundary condition is imposed. If this trial function is a good 

choice, then no further iteration is required to obtain a good estimate of the growth rate. 

Once a proper trial function is chosen, there is no need to maximize or minimize any 

quantity. This is one very good thing about this implementation of the variational 

method. According to the "calculus of variations," the eigenvalue, T, is accurate to 

second order with respect to variations in the trial function about the exact eigenfunction. 

For the two density profiles that are shown below, the variational method works well. It 

provides good approximations. 

IV. RESULTS: 

1. Ramp density profile: 

The ramp density profile jumps from one density to another over a spatial 

interval. The Atwood number is a quantity used to describe a density profile. It is the 

quotient of the difference between the two densities divided by the sum of these two 

densities. In the example shown in Fig.7, the ramp density profile jumps from 1 to 9 as x 



changes from -0.2 to 0.2. This gives us a profile with an Atwood number equal to 0.8 and 

a dimensionless ramp length equal to 0.4. Under the same boundary conditions as 

imposed before, the graphs are plotted from x = -3 to 3. 

In Fig.7, we show the graph obtained using the exact integration of the 

Rayleigh equation. The dashed line represents the density profile. The solid line is the 

eigenfunction, w(z). The Fortran program generates the eigenvalue I? = 0.754 using the 

shooting method. In Fig.8, the graph is obtained using the variational method and the 

solid line is the trial function e-lx-xol. The inverse of the scale length peaks where the 

density profile begins to jump, which is shown by the dotted line. The eigenfunction is 

centered at its peak, which is around x = -0.2. I? is evaluated to be 0.753. This gives a 

-0.77% percent error in the eigenvalue. By moving the center of the eigenfunction xo, it 

is found that the eigenvalue is not very sensitive to the changes. Fig.9 gives a comparison 

between the trial function and directly integrated result for the eigenfunction w(z). The 

solid line is obtained by using the exact integration, and the dashed line is the trial 

function used in the variational method. The graph for the exact integration tends to have 

a round peak and the one for the variational method has a sharp peak. But overall, they 

are very close to each other. 

Fig.7: Exact integration for 
the ramp density profile. 

Fig.8: The variational method for the ramp 
density profile with one over scale length 
plotted to find the center of the eigenfunction. 



s (positian) 

Fig. 9: Comparison between the real function and the trial function for the velocity 
distribution for the ramp density profile. The solid line is obtained by using the 
exact integration and the dashed line is the trial function used in the variational 
method. The graph for the exact integration tends to have a round peak and the one 
for the trial function has a sharp peak. But overall, they are very close to each other. 
The error in the eigenfunction yielded for this density profile is -0.77%. 

2. Exponentially growing density profile: 

One other interesting density profile is the exponentially growing density 

profile. The density changes exponentially with respect to position within an interval. 

One thing that makes this density profile interesting is that the density scale length 

indication of the trial function center does not work because the density scale length is a 

constant over the interval where the density changes. So, the question comes up, where 

should we center the trial function? Should it be somewhere near where the density starts 

to jump, or in the center of the jumping interval, or at the end where the density stops 



changing? 

The density profile shown jumps from density one which is 1, to density 

two, which is 9, over the x interval -0.2 to 0.2. This gives a density profile with 0.8 

Atwood number and 0.4 ramp length. The graphs are plotted from x = -3 to 3. 

Fig. 10: Exact integration for the Fig. 11: The variational method for the 
exponentially growing density profile. exponentially growing density profile 

showing the constant value of one over 
the density scale length over the entire 
width of the exponential density ramp. 

In Fig.10, the dashed line represents the density profile. The solid line is the 

eigenfunction w. The program calculates the eigenvalue r = 0.750 by iteration. 

In Fig.11, for the same exponentially growing density profile shown as the 

dashed line, the solid line is the trial function e-lx-xo for the eigenfunction. The interesting 

thing about this density profile is that the scale length is a constant over the interval 
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Fig.12: Comparison between the real function and the trial function for the velocity 
perturbation for the exponentially growing density profile. This density profile 
yields an error of -2.67%. 

where the density changes, so its minimum cannot be used as an indication of the 

eigenfunction center. As seen in the graph, the one-over-scale-length plot is a constant 

over the interval -0.2 to 0.2. By moving the center to get the maximum eigenvalue, it is 

shown that the center is near the middle of the density jump interval. So in this case, it is 

near the position x = 0. The approximate eigenvalue equals 0.730. It gives an error of - 

2.67% in the value of T. The eigenvalue is not very sensitive to the center of the 

eigenfunction. Fig.12 compares the two eigenfunctions, the result of the direct 

integration and the approximate trial function obtained from the variational method. The 

solid line is the exact solution and the dashed line is the approximate solution. The two 

curves are close to each other. 



V. ACCURACY: 

1. Comparison between three approximate methods: 

varialional 
popular - . . - , . - classical 

~ ~ " ~ " " " ~ ~ " " " ~  2 3 4 5 
kL ramp 

Fig. 13: The accuracy comparison between three different approximate methods is 
shown for the case of the linear density ramp with an Atwood number equal to 0.8 
and a width L. The variational method has the least percent error, compared to the 
popular formula ($ = Akg/(l+AkL)) and the classical formula ($ = Akg). 

There is not just one approximate method for calculating the Rayleigh- 

Taylor instability growth rate. One popular formula $= Akg/(l+AkL) is commonly used 

by scientists.' Another is the classical formula $= Akg. Fig.13 is generated for 

comparison among the variational method, the popular formula, and the classical formula 

by calculating the exact solution for each kL. The data are collected for the case of a 

linear density ramp with an Atwood number of 0.8 and a width L. The variational 

method is shown to be effective. The accuracy depends a lot on the density profile. 

When smaller Atwood numbers, such as 0.2, are used for a linear density ramp profile, 

the scale-length indication for the trial function center seems to not work as well. The 

best center of the eigenfunction does not occur at the minimum of the density scale 

length. 



2. Growth factor and growth rate accuracy: 

Fig.14: Growth factor accuracy is plotted for various values of the growth rate 
uncertainty, such as 1%, 2%, 5% and so on. The conversion between the growth 
rate accuracy and the growth factor accuracy can be obtained from the graph. 

Fig.14 is a graph of the growth factor accuracy. It is plotted for various 

values of the growth rate uncertainty, such as 1%, 2%, 5%, and so on. The conversion 

between the growth factors and the growth rates is obtained through the following 

equation: 

Growth factor = eYt (y being the growth rate) 

One interesting growth factor for the NIF would be 10 and the accuracy of 

the growth factor should be From the graph, which converts the accuracy in the 

growth factor into the accuracy in the growth rate, this point lies mostly near the 5% line. 

5% accuracy in the growth rate is satisfied from the tests I did in my program using the 

variational method, so the variational method is shown to be acceptable for at least these 

cases. 



VI. CONCLUSION: 

The results of the project indicate that the variational method is an 

acceptable method for approximating the growth rates for the Rayleigh-Taylor instability. 

While the percent error is largely dependent on the properties of the density profiles being 

solved for, Fig.13 shows that the variational method yields lower errors in the 

determination of the growth rate than either the popular or classical method for at least 

the case shown. For the linear ramp density profile, the trial eigenfunction centers on 

around where the density starts to change. For the exponentially growing density profile, 

the center is shown to be somewhere near the center of the density ramp. The indication 

of the eigenfunction center using the point of minimum scale length does not work well 

when the Atwood number is too small. 
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