
Controlling Scientific Instruments with JAVA
University Of Rochester Laboratory for Laser Energetics

Advised by Dr. Christian Stoeckl
David Bowen

Abstract
Recording electrical waveforms on OMEGA is a task that has usually required a

computer for controlling oscilloscopes that capture data from the diagnostic equipment. With a

new generation of oscilloscopes integrated with a fully functional computer, the oscilloscope can

run control software itself, removing the need for a control computer. However, the control

software, written in JAVA, must be changed and updated to be operational on this new

generation of oscilloscopes. By changing the interface layers of the software, it is possible to

apply these changes to all diagnostics software instead of being particular to one program. This

means that all of various control programs could easily be updated to operate on the newer

oscilloscopes. The software was changed to have more reliable treatment of interface errors and

was also changed graphically as to appear friendlier to new users.

Introduction

The concept of laser fusion, like the type attempted here at LLE, uses the inertia of an

exploding shell to compress two isotopes of hydrogen, Deuterium and Tritium, to high density

and high temperature. Some of the Deuterium and Tritium atoms combine to form an

intermediate particle immediately breaking down into an Alpha particle and a neutron. As the

unstable particle breaks down it releases energy. An important part of the diagnostics of laser

fusion is measuring the amount and energy of neutrons escaping the chamber. Though neutron

radiation is not the only diagnostic being performed on OMEGA, Dr. Stoeckl was a neutronics

scientist so neutron detection was the diagnostic I was made familiar with. These neutrons are

measured using scintillating detectors. A scintillating detector consists of scintillating plastic

connected to a photomultiplier tube. Neutrons emitted from the chamber hit the scintillating

plastic and strike protons in the hydrocarbon molecule of the plastic. The elastically scattered

protons, the neutrons excite the molecules causing them to emit photons, or scintillate. The

photons strike an extremely negatively charged photocathode in the photomultiplier tube,

causing a serial amplification by knocking one electron into the next plate, knocking more

electrons into the next plate, and so on until the photomultiplier tube delivers the resulting

charge to an oscilloscope. The signal can then be recorded by an oscilloscope and transferred

into a computer for further analysis.

The computer system for controlling oscilloscopes is a bulky and demanding setup. A

computer must be connected to the scope using an interface called a GPIB or General Purpose

Interface Bus. The only way for a computer to use this connection successfully is if the computer

is fitted with a GPIB card. So a computer must not only be loaded with all of the correctly

debugged software necessary for control, but also an interface card and its driver software. The

computer would also require network capabilities to receive pre-shot notifications. So to receive

data properly, the above system would have to be added to the data acquisition location. Though

this may not seem to be the worst of possible data acquisition situations, it can be improved.

The most recent models of oscilloscopes have been designed to be a computer operating

in parallel with an oscilloscope. The computer side of the newer models runs an operating system

that, by default, runs the software that displays the oscilloscopes data. This new generation of

oscilloscope is capable of replacing the previous two-machine setup. The oscilloscope would

have no need for GPIB hardware and the scope is already fully equipped with networking

capabilities. The computer could run the control software in parallel with the oscilloscope and

remove the need for any added hardware.

Though conceptually the idea of running the control software on these new oscilloscopes

seems a reasonable idea, it requires some interesting reverse engineering. The problem lies with

changing all of the control software, which was written to interface with GPIB cards and GPIB

cables to an external oscilloscope, so that it now interfaces with the oscilloscope which functions

as a part of the new generation of computer/oscilloscope hybrids. Before the potential of these

new computer/oscilloscope hybrids can be fully taken advantage of, the current software has to

be updated so it can smoothly go from an internal environment to an external GPIB interface.

Learning the structure of the Software

The existing software had been written for GPIB connections. However, now the

software must run on a computer talking to the scope not with GPIB, but through some sort of

internal interface.

So, where would this new interface start? Where was the backdoor that could be used to

access the data the oscilloscope was capturing? It turns out that the answer lied within software

provided by TektronixB .

The software engineers at Tektronix had written a software interface to allow their own

analysis software to run on the scope and to access its data. All one would have to do, is to use

the methods of the classes defined by TektronixB to talk to the internal scope.

From there, I proceeded with further examination of the code of the program and the

supplied classes. The program I was using specifically was ScopeControl, a good choice as it

was designed for single scope acquisitions. The situation was even better, though, because the

software had been written in layers. Each layer was a link from one part of the program to a

lower part. The part that I had to update, the interface, was at the very bottom. The layer, or

class, named Gpib contained the methods for communicating with the oscilloscopes through a

GPIB connection. Since all control software uses the same layering, changes could be made in

one copy of Gpib.java, tested using ScopeControl, and then distributed amongst all control

programs. However, Gpib now had to be two different classes; one to accommodate internal

interface and one to accommodate GPIB interfaces for a program to truly be useful and work

with both interfaces.

To first write an interface based on this software by TektronixB, we must first know

what this software contains. Unfortunately, TektronixB did not supply us with source code. So,

to view the contents of the software, it was necessary to disassemble the classes. From doing

this, I obtained the knowledge that the class GpibDevice appeared to be the super class of

InstGpibBus. GpibDevice seemed to contain mostly private methods and its constructor required

an object of InstGpibBus. InstGpibBus revealed the public methods required for the program to

operate and communicate properly with the scope. My task was to synthesize a Gpib class with

method definitions redefined for the classes provided by TektronixB. So, by analyzing the

disassembled code, I learned about methods that performed the same operations that were

required by the interface; read, write, clear, get, and status.

With the redefined Gpib class and some routine debugging, ScopeControl was able to

communicate internally with the scope, using TektronixB supplied access classes and .DLL's.

Versatilitv

At this point, I had successfully created an internal interface, though not efficient or

reliable. It was not quite of the quality where it could be reliably used and distributed. In fact, it

was certain that the current version of the program would simply not work with a GPIB

connection. Further extension was necessary.

A quality that seems to be the mark of a well-written program is automation. The less that

the user must define, the more user friendly the program is, the better the program is. However,

research may continue into the automation of the GPIB connection selection. As of now, the

GPIB connection type is a user defined setting and will result in error if selected incorrectly.

The design of the Gpib setup is another interesting part of this versatile program. There

exists the new internal version, Gpibint (see figure 1 for a diagram of the structure of the new

internal interface), and the external GPIB cable version, Gpibext. They were tied together as

extensions of a super class, Gpib. Gpib contained the methods common to both Gpibint and

Gpibext. However, the program still must be told which class file to use. On the user side, this is

done with a check box in the settings menu.

ScopeControl

The program that I subjecting to the testing of the internal interface was a program called

ScopeControl, its purpose being for a computer to capture data from an oscilloscope, either once

or repeatedly as with a log or a run. However, with the new type of oscilloscope capable of

writing its data to a hard drive or network drive, many of the functions of ScopeControl are not

necessary. The only remaining useful function would be its ability to take and record data in

intervals, known as logging. However, the very design of ScopeControl made it an ideal

program with which to do testing with scope interfacing. The functions were clear and user

executed making this an instant results type of program.

By using ScopeControl and changing it's layers, the goal was achieved of creating the

internal interface and making it reliable. Updating ScopeControl was more a tool of education of

software layering and design rather than a practical expenditure (see Figure 2 and Figure 3 for

screenshots of ScopeControl's user interface before and after the updates). The redesign of

ScopeControl did, however, create a user friendly and reliable example of the internal interface.

Conclusion

By changing the layering structure of diagnostic software, such as ScopeControl, a single

version of any diagnostic program can be made to run on either a control computer or on the

newer computer-oscilloscope hybrids. ScopeControl was updated to exemplify the ability to

make diagnostic software not only versatile but also reliable and user friendly. ScopeControl was

only an example. The low level interface software developed in this project will be used by many

applications running on the new generation of oscilloscopes. This will end the necessity of a

separate computer to archive data collected by previous generations of oscilloscopes on

OMEGA.

Figure 1

Scopecontrol internal interface structure

As the diagram shows, the Gpibint layer uses methods defined in InstGpibBus.class to interface

with InstGpibNative.dl1 which in turn communicates with the oscilloscope.

TektronixB

InstGpibBus

I
-

TektronixB I

I

System Steps Omitted
Oscillosc~pe ~

File Edit Tools
- -... - .----.---. *- .,-- .--- --- .-- - -..-. *.-----*.--- *----w.-,..v.-.-" .-"-", -.--~.- -.. -. .." .. -". -- . . I

Figure 2.

ScopeControl

July gth, 200 1

Re Edit Toas -- -. --- ,.-- .- ---.- --.--.--

Scopecontrol
Modified by Dave Bowen

as of August 3 1 st ,2001

Appears with updated user interface and underlying error messaging improvements.

