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Inertial Confinement Fusion is based on the idea of imploding a target (filled with deuterium and 

tritium gas) in an attempt to release energy in the form of neutrons. To understand and predict 

target behavior during the fusion process, it is necessary to produce accurate simulations of the 

implosion. The equation of state (EOS) f o m  an indispensable part of these simulations. In this 

project several available EOS, both tabular and analytic, were compared. Also, the concept of 

interpolation from tables as an alternative to using analytic expressions was considered and the 

accuracy of various interpolation methods was evaluated. 

I. Introduction 

Currently our Earth has three major sources of energy: fossil fuels, nuclear 

fission, and solar energy. However, all three sources have their share of disadvantages, 

whether it be in atmospheric pollution, inefficiency, or limited resources. Hence the 

question arises: "What source of energy is clean, safe, feasible, and inexhaustible?" As 

we step into the next millennium, the concept of Inertial Confinement Fusion (ICF) as a 

viable alternative to fossil fuels, is gaining interest and momentum. Looking at our sun 



as a prime example of ICF, i t  becomes appealing for us to try and artificially create this 

naturally occurring phenomenon. 

ICF is characterized by a series of fusion reactions between nuclei of light 

elements, releasing energy in the process. The Equation of State (EOS) performs a vital 

roIe in simulating this process as it is used to determine the pressure, heat capacity, and 

energy of a material under all conditions of temperature and density. Therefore, EOS is 

useful in not only understanding ICF, but also in predicting the end resuIt. 

As of now, there are four EOS tables that are available for computer simulations 

at LLE. They include SESAME tables3 (from Los Alamos National Laboratory, NM), 

LEOS tables2 (from Lawrence Livermore National Laboratory, CA), tabular Thomas- 

Fermi tables4 (from Laboratory for Laser Energetics, NY), and Thomas-Fermi analytic 

tables' (from Rutherford Appleton Laboratory, UK). All four tables provide EOS for 

aluminum, plastic, and a 50150 deuteriurnJtritium gas (all of which are present in most 

targets). One objective of this project was to compare the different tables, keeping in 

mind the fact that for cold and warm dense plasma (near solid densities and temperatures 

from 0.01 to 100 eV) equations of state are not well known. Another goal was to create a 

new equation of state table, from the analytic EOS, primarily to produce faster run-times 

on computers. This p e ~ t t e d  us to study interpolation methods and their accuracy. 

2. Comparison of EOS tables 

Before discussing the similarities and differences between the EOS tables, it is 

helpful to introduce the units of measurement that are consistently used across all four 

tables mentioned in section 1. Temperature is measured in electron volts ( l e v  =11604K), 



density is measured in grams per centimeter cubed (g/cm3), pressure is measured in 

megabars (Mb), energy is measured in ergs per atom (ergslatom), and finally heat 

capacity is measured in ergs per atom per degree Kelvin (ergslatomPK). Temperatures of 

interest range from 2.5 x lo-* eV (room temperature) to 32 keV, while the densities 

densities range from l .e-3 to 1000 g/cm3. 

First, we compare the pressure of deuterium gas between SESAME and LEOS 

(Fig. 1). The relative agreement between two independent tables increases our 

confidence in the accuracy of these tables. Next, we compare the analytic and tabular 

Thomas-Fermi EOS for pressure, energy, and heat capacity, each as a function of 

temperature and density. Thomas-Fermi EOS needs a quantum mechanical correction to 

describe conditions for a warm dense plasma. A correction is applied only to the electron 

pressure in the tabular Thomas-Fermi and to all quantities in the analytic Thomas-Fermi 

EOS. As a result, while both tables agree fairly well in computing pressure (Fig. 2), they 

disagree to a large extent when calculating energy (Fig. 3) and heat capacity (Fig. 4). As 

expected all three variables show good agreement in the ideal gas region (T > 1 keV). 

Since the analytic and tabular Thomas-Fermi EOS differ, we turn to SESAME 

and LEOS to resolve the disagreement, or at least distinguish the correct table from the 

incorrect. Comparing the analytic Thomas-Ferrni EOS with SESAME confirms that the 

analytic code is more accurate than tabular Thomas-Fermi for pressure (Fig. 5) and 

energy (Fig. 6), but not for heat capacity (Fig. 7). Similar comparisons with respect to 

aluminum confirm the above conclusions as seen in Figs. 8,9,  and 10. 

Thus, the conclusion obtained from comparing the EOS tables is that the analytic 

Thomas-Fermi EOS is more reliable than the tabular Thomas-Fenni EOS (except for heat 



capacity). In addition to being more accurate, the analytic EOS is advantageous because 

it finds pressure or heat capacity for any specific values of temperature and density, 

whereas the tabular EOS needs to be interpolated. 

3. Interpolation methods 

The analytic EOS gives us the opportunity to test interpolation methods and to 

check whether interpolation from tables is faster than calculating analytic expressions. 

To that end, a table was created from the analytic EOS, which we call "tabulated analytic 

EOS". 

When comparing interpolation methods with analytic computation, the two major 

factors involved are speed and accuracy. To find the values for pressure and energy, we 

decided to interpolate from the tabulated analytic EOS. However, to find the specific 

heat, we need to calculate the derivative of the interpolated energy value. The following 

methods were used to find interpolated values for the energy (e) and the specific heat (C,) 

at point x with values T and d for temperature and density: 
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The energy was interpolated using two methods: 

I. The first method calculates the derivative at e(t;,d,), to approximate the 

behavior of the curve at point x. 

e(T,d) = e(T,d,) + e(T.,d,+,) - e(T,d,) (d - d, )  + e(T+,, di - e (T ,  d,) (T-71) 
d,+l - d, T+l - T 

( 1 )  

2. The second method interpolates bi-linearly (in two directions). Thus, first we 

interpolate along the temperature axis over the densities, and then along the 

density axis over the temperatures, to approximate the value of the curve at 

point x 

e, = e(-T,+, ,d,) + ( d  - d,) e(T+,,di+l) - e(7;-+1,d,) 

d,+l - di 

The specific heat, which is the first derivative of energy with respect to temperature at 

constant volume, was interpolated using one method. 



1. This method first calculates the 'centered'derivatives at the temperature grid 

points from the interpolated values el, ez, e3, and e4 as defined when deriving 

Eq. 2. 

Now the value at x can be found by linearly interpolating over the temperature. 

We considered evaluating spline interpolation for speed and accuracy, but i t  still remains 

to be done. 

3.2 Accuracy and speed of interpolation methods versus analytic computation 

When comparing the interpolation methods for energy with the analytic EOS 

code, the second method was more accurate (Fig. 1 I ) ,  showing less than 0.3 percent 

error. When comparing the interpolation methods for specific heat with the analytic EOS 

code (Fig. 12) results showed less than 1 percent error; Thus, the interpolation methods 

show good accuracy. 

When computing the run-time, both interpolation methods ran at about the same 

speed, and were both more than 200 times faster than the analytic EOS code. When both 

codes were looped 1 million times, the interpolation code was completed in 0.12s while 

the analytic code took 28.47s. Even with this enormous time difference, it is actually 

possible to widen this gap even further by traversing the table more efficiently 

(performing a binary search rather than a sequential search). Our conclusion is that the 



speed of the interpolated EOS outweighs any slight inaccuracies in the methods and is a 

very efficient method of calculating EOS quantities. 

3.2 Scaling of tabulated values before interpolation 

The density and temperature grid points in the SESAME and LEOS tables are 

obtained by dividing loglo decades into equal spacing. The resulting grid points are then 

not equally spaced. We call these tables "logarithmically scaled" tables. The analytic 

EOS table was created with the same grid pattern. In an attempt to improve the accuracy 

of the interpolation, we created a "linearly scaled" analytic EOS table consisting of the 

loglo of all values. The resulting temperature and density grid points are then equally 

spaced. Certainly, it seems that a logarithmic curve would be harder to bi-linearly 

interpolate than a linear curve. However, when the two were compared, it was found that 

logarithmically (Fig. 12) interpolating was actually more accurate than linearly 

interpolating (Fig. 13): 

de 
Logarithmic interpolation: - (same as Eq. 3) 

dt 

Linear interpolation: - 

Linear interpolation is inaccurate because it involves not only calculating the derivative, 

but also multiplying by the energy value. This is the problem because the energy values 

can be several magnitudes apart between two temperature grid points. This becomes 

clearer when looking at figure 12, in which the specific heat (C,) takes a big jump at a 

temperature of l e v  because the energy graph shows a very steep gradient at that 



temperature. Thus we conclude that, for general interpolation linear scaling is 

appropriate, but when taking the derivative it is better to use logarithmic scaling. 

4. Conclusion 

This project produces three conclusions. Firstly, i t  was found that the Thomas- 

Ferrni analytic EOS matched SESAME and LEOS tables more closely than tabular 

'Thomas-Fermi EOS, which makes the analytic EOS more accurate and reliable. 

Secondly, we found that interpolating from tables is more than 200 times faster than 

analytic calculation. This led to the creation of another EOS table - the interpolated or 

tabulated analytic EOS. Finally, in general, linear scaling enables the tabulation of more 

accurate interpolated values. However, when interpolation requires computing 

derivatives, logarithmic interpolation is more accurate. 
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