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Abstract

The optical circuit-analysis (OptiCA) system (or PICA — picosecond imaging
circuit analysis), based on infrared photon emission from the switching transistors
in CMOS chips, is an efficient non-invasive testing method for the new generation
VLSI CMOS circuits. We have developed a new type of detector based on ultra-
thin superconducting NbN films, the so-called NbN superconducting single-photon
detector (SSPD), and implemented it in the OptiCA system.

The first-generation SSPDs had a simple structure of a 0.2-ym-wide and 1-
pm-long NbN stripe with a thickness of about 10 nm. They counted photons
but suffered from a low quantum efficiency (QE). The second-generation SSPDs
were fabricated with meander-structured NbN stripes covering an active area of
either 4x4 um? or 10x 10 um?, which increased the coupling of the incident light
to the detector. The stripes had the width of about 200 nm and the thickness
of 10 nm. These SSPDs have shown greatly improved performance compared
to the single-striped detectors, and were characterized by GHz counting rates of
visible and near-infrared photons and negligible dark counts. The time-resolved
measurement showed that the SSPD could respond to pulses with ~100-ps time
delay, corresponding to a repetition rate of 10 GHz. A photoresponse time delay
phenomenon in the SSPDs has been investigated and discussed.

Finally, the third-generation SSPDs, with the stripe thickness of 3.5 nm, were
fabricated and characterized. The most important feature of these SSPDs was

the greatly improved QE. They exhibit an experimentally determined QE ranging
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from 5% at the 1.55-um wavelength up to 20% at 0.4-um wavelength, a low
timing jitter (about 18 ps) and a high sensitivity (noise equivalent power on the
order of 10718 W/Hz!/2 at 1.3 um wavelength).

The second- and third-generation SSPDs are presented in detail in this work
and they have been used for VLSI CMOS circuit testing with the OptiCA system.
The IR photon emissions from both PMOS and NMOS transistors were clearly
resolved with greatly improved timing resolution (timing histograms have the full-
width-at-half-maximum of ~60 ps). The signal acquisition time with SSPDs was

much shorter as compared with other detectors.
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Chapter 1

Introduction

Modern integrated circuits today are mostly based on CMOS (Complementary
Metal-Oxide-Semiconductor) technology, with millions of transistors fabricated
on the surface of a silicon wafer in very-large-scale-integration (VLSI) technology.
The state-of-the-art VLSI circuitry today has a feature size of <0.09 pm and
a clock speed of up to several GHz. With increasing device design complexity,
and its shrinking size, many classical hardware-testing techniques are losing their
effectiveness. For example, electron beam testing has been widely used for precise
timing characterization of the internal circuitry of CMOS [1,2]. Unfortunately,
with increasing number of wire planes, and the use of the flip-chip packaging
method, in which the chip is flipped over and the top metal layer is soldered
directly to the package, it is nearly impossible to acquire enough electrical signals
out for circuit testing by standard methods including electron-beam testing. This
situation makes classical techniques useless and in many cases obsolete. Therefore,
developing new diagnostic methods for VLSI circuit testing becomes an urgent
challenge for engineers.

Thanks to the infrared (IR) photon emission phenomenon, an intrinsic char-
acteristic of excited (hot) electrons in silicon, scientists have found a way to non-
invasively measure the timing characteristics of CMOS circuits [1]. The term “hot
electron” was originally introduced to describe nonequilibrium electrons (or holes)

in semiconductors [3], whose distribution could be formally described by the Fermi



1.1. INFRARED PHOTON EMISSION FROM CMOS 2

Metal contacts

Gate

Drain

Phbton

Figure 1.1: (a)Hot electrons flowing through NMOS channel emit photons
out. (b)Picture of CMOS chip with superimposed photon emission from a
component on the chip.

function but with an elevated effective temperature. The term is still fruitful in

describing excited electrons in superconductors, as will be discussed in Chapter 2.
1.1 Infrared photon emission from CMOS

Figure 1.1(a) shows a cross-section view of an NMOS with a hot electron in the
channel. Electrons flowing through this channel experience an electrical field
which excites them to a higher energy level, so they can emit photons out some-
where close to the drain of the NMOS. A picture of a simple CMOS chip in
operation with schematically superimposed photon emitting sizes is shown in
Fig. 1.1(b), where the spots represent the photon emission from the corresponding
components on the chip.

To understand this photon emission principle, let’s take a CMOS invertor as



CHAPTER 1. INTRODUCTION 3

vdd vdd Vdd
0 vdd J —L vdd 0
{in) {out) {in) i (out) (i) (out)
%’(on
high output switching low output

(@) (b) (o]

Figure 1.2: Normally operating CMOS transistor emits near-IR photons (1.0-
1.4 pm) when current pulse passes through the channel. Photon emission
correlates with the transistor-switching process. See text for details.

an example (Fig. 1.2). With a low voltage level (0) input, the output of the in-
vertor is at high level (V) (Fig. 1.2(a)). When the input switches from low level
to high level, then the output of the invertor flips from high level to low level. In
this situation, there is a current flowing through n-channel. The discharge process
of the excited electrons leads to IR photon emission in the wavelength range of
1.0~1.4 pm [2], as shown in Fig. 1.2(b). These photons carry very important
timing information on the switching properties of the circuits. If there are defects
in the channel, the photon emission is then modified, accordingly. Thus, detect-
ing emitted photons helps in understanding the circuit switching properties and
locating the defects in the chip.

The phenomenon of the IR photon emission from hot electrons in silicon has
been investigated since the late 1980’s [4-7]. The mechanism, however, has not
been understood thoroughly yet. Theoretical calculations of J. Bude et al. [4]
have found that the conduction band to conduction band (c-c) transition with
assistance of phonons or ionized impurities, should be the dominant process for
IR photon emission in Si. Furthermore, Villa et al. [6] improved the theory and

confirmed that the phonon-assisted c-c transition plays a key role in the photon
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Conduction bands

a b

Eg

Valence bands

Figure 1.3: Relaxation mechanisms for photon emission from hot electrons
in a realistic band structure of Si: (a) indirect c-c (phonons or impurities
assisted), (b) direct c-c, (¢) indirect c¢-v, (d) direct c-v [4].

emission. Moreover, in the real situation of a CMOS circuit, photons with energy
higher than the bandgap (£, = 1.12 eV) are absorbed by the silicon substrate
and cannot be emitted out. Thus, the photons that can be transmitted out are
mainly in the IR range (>1.1 pm).

Generally speaking, there are two possible relaxation mechanisms for IR pho-
ton emission from excited carriers in semiconductors: radiative recombination
of electrons and holes from the conduction band to the valence band (c-v), and
radiative transitions which involve only one type of carriers, either the c-c for
electrons, or the valence-to-valence band (v-v) for holes. These processes can be
further classified as direct and indirect transitions with the assistance of phonons
or impurities. Figure 1.3 schematically illustrates the above mentioned processes
and the difference between direct and indirect transitions.

When an electron in a crystal is coupled to a radiation field through the vector
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potential _1-4—)(1“, t), its Hamiltonian can be expressed as [4]:

H= % p—S 202 + Vi), (1.1)

ol

where V, is the crystal potential. Bude et al [4] have considered the situation
that the radiation field is weak and then treated as a perturbation to the Bloch
wave function ¥,j, which simplifies the Hamiltonian with only the linear term

remaining, so the photon perturbation H,, can be written as

€

h
H,, = A\ =—i2V. &, (1.2)
mc

——p
where the A subscript of A refers to the polarization of the radiation fields. Con-
sidering the situation of negligible free-carrier absorption and low optical intensity,
Bude et al [4] gave an expression of the spontaneous emission rate R. Both direct
transition R4, and indirect transition R;, have been evaluated. As both expres-
sions are too complicated and are not related directly to the work in this thesis,
they are not included here.

What should be mentioned is that in the direct transition process, the elec-
trons go vertically from an upper band to a lower band as the momentum of the
electrons is conserved (k, = k;, where u and [ designate the upper and lower band
indices for the transition.). For Si, the direct band gap energy is 3.2 eV, if photon
emission corresponds to the direct transition from conduction band to valance
band, the photon should carry an energy of 3.2 eV. Experimental measurements,
however, didn’t observe such energetic photons because Si is an indirect bandgap
semiconductor. Thus, the contribution to the photon emission from the direct
transition is from either ¢-¢ or v-v band relaxations.

On the other hand, in the indirect transition (phonon-assisted or impurity-
assisted), the momentum-conservation is required between the initial and final
states. taking phonon-assisted process as an example, the phonon should have a

wave vector of g = k, — k.
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Figure 1.4: Comparison of the theories on the photon emission spectrum
from Si-based MOSFET [7]. PA means phonon-assisted.

With the emission rate equations given, the next step is to find the appropriate
carrier distribution function. It is known that when the free carriers (electrons
and holes) are in a high electric field, their distribution can be assumed of the
Maxwell-Boltzmann type, with an increased carrier temperature. In Bude et al’s
model [4], by considering the negligible degeneracy effect, the distribution function

is written as
F(E) = N(T,n)e E/kT, (1.3)

where T is the carrier temperature, and N (7T, n) is carrier density at temperature
T normalized by the carrier density n and k; is Boltzmann’s constant.

With the theory described above, the emission spectrum of Si has been ob-
tained with Monte Carlo calculation [4]. However, it has been found that at
extremely high electric field, the carrier distribution is nonequilibrium and a cor-
rection of the distribution function (Eq. (1.3)) is necessary [4]. Nevertheless,

the calculation results carried out by Bude et al [4] on p-n junction diodes and
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n-channel MOSFETSs lead to the conclusion that there is a coexistence of direct
and phonon-assisted conduction-band to conduction-band radiation.

Using second-order perturbation theory, Villa et al [6] claimed that the
phonon-assisted transitions play a key role over all of the energy range from near-
infrared to ultraviolet (UV). Recently, Pavesi et al. [7] gave a better picture of
this process by considering more upper conduction bands and extended the pho-
ton emission spectral range. Moreover, they have included the phonon-assisted
v-v transition as well. Figure 1.4 shows a comparison of the photon emission
spectra based on these theories. We can see that the radiation from Si is mainly

in the range of 1~1.4 pm.

1.2 CMOS circuit testing system

IDS PICAT™ system, the Picosecond Imaging Circuit Analysis system, was in-
vented by F. Kash and J. Tsang of IBM T. J. Watson Research Center in 1996
[8,9] for CMOS emission studies. PICA is the new optical technique for VLSI chip
testing, designed for space-resolved observation of IR photon emission. It has been
later transferred to NPTest Inc. (former Schlumberger Semiconductor Solution
Inc.) for commercial manufacturing [2] in its time-resolved version and is known
as OptiCA system. Figure 1.5 shows a simple schematic of the system setup.
The device under test (DUT) in Fig. 1.5 is a packaged VLSI CMOS chip, with
substrate thickness thinned to approximately 60 um and socketed in a test board
with the polished surface facing the imaging optics of the OptiCA system. IR pho-
tons emitted are collected by the objective lenses and fed to the detector, which
records the time and/or space information of the photons and sends the infor-
mation to the image and/or timing analysis computer. The IR radiation emitted
from the silicon, however, is extremely weak. Furthermore, the emission process is
ultrafast and the repetition rate of switching can be >1 GHz. Thereby, detectors
with an ultrafast response time, high detection efficiency (DE) and single-photon

detection ability are required for implementation into the OptiCA system.
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Figure 1.5: Optical and electronic components of an OptiCA system. The
DUT is a packaged CMOS chip.

1.3 The choice of detector for CMOS testing—
NbN SSPD

A number of single-photon detectors (SPDs) exist already are commercially avail-
able (see Table 1.1). Photomultiplier tube (PMT) is one of the most widely used
SPDs in optoelectronics [10]. It consists of a photo-cathode and a series of dyn-
odes. The photon incident on the photo-cathode excites an electron, which can
then be collected on the first dynode, to excite more electrons to go to the second
dynode, and so on. Thus, a high gain of electron multiplication is obtained on
the last output electrode and the signal can be captured. Although the PMT has
about 30 dB Signal-to-Noise Ratio (SNR), it has a limitation of spectral sensitiv-
ity at ~1 um. The reason is that the energy of photons with longer wavelength
is too low to generate excited electrons from the metal photo-cathode. Even the
recently commercialized PMTs from Hamamatsu Co. with GaAs and InGaAs
cathodes for IR range are not effective enough, with Quantum Efficiency (QE) of
~1%, as listed in Table 1.1.
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Semiconductor-based SPDs are another group of commercially available de-
tectors. One of them are avalanche photodiodes (APDs) [11-13], which work at
the reverse voltage biased close to the breakdown region. With the absorption of
incident photon, an electron-hole pair is generated and accelerated by the biasing
electrical field, which breaks other electron bonds and produces new electron-hole
pairs. This avalanche process continues and produces more and more electron-
hole pairs. The APD SPDs, especially Si APDs, have been studied thoroughly and
already found many applications. The disadvantage of APD SPDs is relatively
slow photoresponse, generally in the hundreds of nanoseconds range. Moreover,
they always have relatively high dark currents. The Si APDs have bandwidth
limitation of >1 pum.

Another reported semiconductor-based SPDs are solid-state photomultipliers
[14-16]. They have a semiconductor cathode doped with impurities, which has
a much narrower sub-bandgap. The spectral sensitivity is reported to be from
0.4 pm up to 28 pm with a QE of up to 85% in single-photon detection regime.
However, the problem is that its SNR is too low [17] and the response time is
typically in a several tens of nanoseconds range.

As listed in Table 1.1, we notice that commercially available PMTs and APDs
have counting rates of less than 10 MHz, large jitter (>100 ps) and high dark
counts.

On the other hand, superconducting devices have already become practical
optical and IR sensors [18,19]. The energy gap of superconductors is typically
a few meV (two to three orders lower than that of semiconductors); thus, each
individual optical photon is able to generate a large number of excited carriers
when hitting a superconducting detector. Measuring the resulting electrical pulse
allows a precise detection of the incident single photon. One of the most advanced
types of superconducting detectors is the superconducting tunnel junction (STJ)

[18]. The STJ can operate from X-ray to far-IR. However, their response time
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Table 1.1: Comparison of performance of different SPDs, operating at 1.3 pum.

Detector Model Counting rate QE  Jitter Dark counts
s (R () (9
PFD5WI1KS InGaAs APD 5 x 10° 16 200 500
R5509-42 STOP PMT 9 x 10° 1 150 2 x 10*
Si APD SPCM-AQR-16 5 % 10° 0.01 350 25
Mepsicron II PMT 1 x 10° 0.001 100 0.1
STJ 5 x 103 60 N/A N/A
SSPD (In this thesis) 2 x 10° 6 18 <0.01

is on the order of microseconds, which is not sufficient for practical VLSI CMOS
circuit testing.

The NbN thin-film superconducting single-photon detectors (SSPDs), recently
developed by the Moscow State Pedagogical University (MSPU) and University of
Rochester collaboration, seem to be the most promising detector for non-invasive
CMOS circuit testing. The detector is characterized by picosecond response times,
relatively high QE, and single photon sensitivity from ultraviolet to near-IR ranges
[20-23]. Especially in IR operation, the NbN SSPDs significantly outperform any
modern commercial APDs or PMTs [24]. For comparison, the characteristics of
NbN SSPD are listed in Table 1.1 as well. For NbN SSPD, the measured counting
rate is >1 GHz, QE at 1.3 pm is up to 6%, jitter is measured to be less than 20
ps and dark counting rate is less than 0.1 counts/second at operation mode. By
further improving the fabrication process and the device structure, we expect even
better performance. Based on the comparisons above, we can see that our NbN
SSPDs are the natural choice of detector for the OptiCA system. The NPTest
Inc. is actively involved in implementing the NbN SSPDs in the OptiCA system.

In general, the objectives of this research can be briefly expressed as follows:

e Design and development of NbN SSPDs.
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e Measuring the photoresponse spectrum, QE, and time-resolving character-

istics of the detectors.
e Testing detectors in the OptiCA system.

The objectives above have been accomplished and applications of the NbN
SSPDs in other fields have been proposed. I present below already obtained

results and propose future work.

1.4 Outline of the thesis

In the remainder of this thesis, I introduce the basic theories of the photoresponse
mechanism of SSPDs. Besides the discussion within the 2-T and R-T models
for the photoresponse of superconductors, the model of supercritical current as-
sisted, hotspot formation process is elaborated, which gives a phenomenological
explanation for the photoresponse mechanism of NbN SSPDs.

Then, I review the fabrication process of the NbN SSPDs and characterization
of NbN film in Chapter 3. The newest NbN SSPDs are already in the third
generation. The first generation of the NbN SSPDs used a single stripe as the
active region, while the second generation had a meander structure covering a
larger active area of either 4 x 4 yum? or 10 x 10 um? but still with the thickness of
10 nm. The third generation of the NbN SSPDs exhibits a thinner film thickness
of 3.5 nm and a higher meander structure-filling factor, which results in a much
higher QE. Atomic Force Microscope (AFM) and X-Ray diffractometry have been
used for the characterization of device micro-structure.

The experimental setups are presented in Chapter 4. One is the setup with
liquid helium cooling dewars (from either Infrared Laboratories Inc. or Janis
Research Co.) used for the photoresponse measurement. Another one is the
OptiCA system setup developed by NPTest Inc. with close-cycle cooling system
working at 2.5 K.
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In Chapter 5, the experimental results on spectral response and time-resolved
measurements of NbN SSPDs with thickness of 10 nm and 3.5 nm are presented
and discussed. Time delay phenomenon of the photoresponse signal at single-
or double-photon counting regimes has been observed and investigated in detail.
Then, the dark counting property and sensitivity of the NbN SSPDs are discussed
in Chapter 6.

Chapter 7 is devoted to the application of NbN SSPDs in CMOS circuit
testing with the OptiCA system. The performance of the OptiCA system with
semiconductor-based detectors is compared to that with the NbN SSPDs. The
figures of merit of the OptiCA system, such as the signal acquisition time and
system noise equivalent power, have been elaborated and discussed.

Finally, some conclusions are summarized and some future research work is

discussed in Chapter 8.
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Chapter 2

Photoresponse Mechanisms of
Superconductors

In this chapter, the basic physics on superconductivity, photoresponse mecha-
nisms for superconductors, such as the 2-T model, RT model, and hotspot model
are introduced. The hotspot model has been used to explain the photoresponse

process in NbN SSPDs.
2.1 Brief introduction of superconductivity

It was in 1911 that the superconductivity was first discovered by Heike Kamer-
lingh Onnes, the Nobel laureate for his pioneering work in low temperature physics
and for liquidizing of helium. In his experiment, the resistance of mercury was
measured to be zero when the temperature was decreased to around 4.2 K [25].
The temperature at which the materials changed from the normal state to the
superconducting state was later termed as the superconducting transition tem-
perature 7,. Two years later, Onnes found that the superconducting state could
be suppressed if the superconductor was biased by a current higher than a critical
value of I, or a magnetic field higher than a critical value of H,.

Thereafter, much research work has been carried out on superconductors
worldwide. The theoretical research on the nature of superconductivity has pro-
gressed simultaneously with the work of many scientists, such as, F. London and
H. London (1935) with their work on the foundation of superconducting electro-

dynamics [26], and Ginzburg and Laudau (1950) with the phenomenological the-






