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Abstract

The ponderomotive acceleration of electrons by a one-dimensional circularly
polarized laser pulse in a plasma is studied. The threshold value for the pulse
intensity at which the electrons are repelled and the expression for the resulting
energy gain are derived. The dephasing time of the accelerated electrons is de-
termined analytically and is proportional to 73l, where vp is the Lorentz factor
associated with the pulse speed and [ is the pulse length. The residual dependence
of the dephasing time on pulse intensity and electron injection energy is studied
in detail. A multistage variant of this acceleration scheme in a plasma with a
density gradient is described. It appears possible to increase significantly the
energy of preaccelerated electrons. Acceleration gradients of order 100 GeV/m
are predicted.

The extension of the scheme to higher dimensions requires knowledge of
the relativistic ponderomotive force. The existing formula for the pondero-
motive force was derived under the assumption that the quiver speed of elec-
trons oscillating in the applied electric field is much less than speed of light.
This condition is violated for the ultra-high intensities needed for the proposed
scheme. The ponderomotive force exerted on electrons by an ultra-intense pulse
(IA* > 10"*Wum?/em?) in a vacuum and in a plasma is studied in detail.

To verify the predictions of the theoretical model, a two-dimensional rela-
tivistic particle-in-cell code was developed. Test simulations that validate the
code are described. Simulations of the interaction of a preaccelerated electron
bunch with an electromagnetic pulse in a plasma are presented and analyzed.
The simulation results validate the theoretical model and show that significant

ponderomotive acceleration is possible.
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Chapter 1

Introduction

In recent yvears there has been considerable interest in the possibility of acceler-
ating electrons by strong laser fields. This is due to the recent development of
ultra-high power (> 10TW) short-pulse (< 1ps) lasers based on chirped-pulse
amplification [1]. The chirped-pulse amplification technique [2] has dramatically
advanced the compression of laser pulses in recent years [3], to the extent that
subcycele pulses have been generated in the microwave [4] and far-infrared [5, 6]
regimes.

Electron acceleration schemes involving laser fields can be divided in three
main categories: acceleration in vacuum [7], gases [8] and plasmas [9]. All three
have their advantages and disadvantages.

The acceleration of electrons in vacuum by optical fields is limited mainly
by pulse diffraction and electron slippage. The majority of vacuum schemes use
high-order Gaussian beams, which can provide a longitudinal electric field E. as
a driving force for particle acceleration. Since this component propagates with
phase velocity vyn/c >~ 1 + 1/(kLg), where k is the laser wavenumber and the
Rayleigh length Lr = kw?/2 is the distance over which the laser pulse diffracts,

and is greater than c, energetic electrons with v. ~ ¢ will phase slip with respect



(8

to the accelerating field and will eventually decelerate. Slippage will occur over
a distance z,, which, for highly relativistic electrons, is of order L.

Lawson and Woodward {10, 11] proved a simple theorem which shows that
under certain restrictive conditions no net energy gain is possible using optical
fields. The Lawson-Woodward (LW) theorem assumes that (i) the interaction
region is infinite, (ii) the laser fields are in vacuum with no walls or boundaries
present. (iii) the electron is highly relativistic (v ~ ¢) along the acceleration path,
(1v) no static electric or magnetic fields are present, and (v) nonlinear effects such
as the ponderomotive (PM) and radiation-reaction forces are neglected. If the
electrons in the proposed acceleration schemes are to gain energy, one or more of
these condition must be violated.

In vacuum one can limit the interaction region by introducing reflective bound-
aries. In principle, limiting the interaction distance to a small region near the
focus can lead to substantial energy gain. In practice, however, the energy gain
is limited by the intensity damage threshold of the reflecting surface material
[7. 12. 13].

Another way to violate the LW conditions is to introduce a periodic mag-
netic field, as in the inverse free-electron laser (IFEL)[14. 15]. In this scheme
a relativistic electron oscillating in the magnetic field of the wiggler can reso-
nantly absorb energy from the laser pulse if the oscillation frequency is close to
the Doppler-shifted laser frequency seen by the electron. The main drawback
of this scheme is that it relies on a resonance condition which depends on the
electron velocity. As the electron is accelerated, the resonance condition breaks
and further acceleration is impossible.

Alternatively, finite energy gain can be achieved by introducing a background
gas into the interaction region, as in the inverse Cherenkov accelerator (ICA) [8].

The linear dispersion relation for a laser beam propagating in a neutral gas implies



that the axial phase velocity vy is given by vpn/c =1+ 1/(kLg) — (1§ — 1)/2,
where 1) is the linear refractive index. Tyvpically, nZ — 1 <« 1 and is proportional
to the neutral gas density n,. The proper choice of n, results in ¢,; < ¢ and
reduces the electron phase slippage. However, diffraction remains an important
issue.

Recently. plasma-based schemes have received the most attention. Plasma
offers significant advantages as an accelerating medium because it can sustain
ultra-high fields, and under certain conditions it can optically guide a laser pulse
for many Rayvleigh lengths.

The standard plasma accelerator schemes rely on the ability of plasmas to
support large-amplitude plasma waves (wakefields) which are used to accelerate
electrons to high energies. In the laser wakefield accelerator (LWFA) the plasma
wave is driven by the PM force associated with the laser pulse. [t pushes electrons
ahead of the pulse, resulting in charge separation and an associated electrostatic
field. This field pulls electrons back, resulting in electron oscillations behind the
pulse. creating a plasma wave with phase velocity approximately equal to the
group velocity of the pulse. In the plasma beatwave accelerator (PBWA) the
plasma wave is driven resonantly by two laser beams with frequencies that differ
by the plasma frequency.

In this thesis we describe a new plasma acceleration scheme which does not
rely on a wakefield for acceleration, but rather uses the P\ force associated with
the field of the laser pulse to accelerate electrons directly. In contrast to wakefield
schemes, we inject a bunch of electrons ahead of the pulse and propagating in
the same direction. Initially the electrons have speeds less than group speed of
the laser pulse (v, < vy) and the PM force pushes electrons ahead of the pulse
(Fpar > 0). Tt turns out that if the intensity of the pulse is higher than some

threshold value, there will be points on the electron trajectories at which v, = v,



and Fpy > 0. The PM force will continue to accelerate electrons, but since the
electrons now move faster then the pulse they will eventually outrun it, at which
point theyv can be extracted easily.

The preceding behavior is similar to what happens in vacuum, except that
in vacuum v, = c, and therefore. the electrons always move more slowly than
the pulse and eventually are overtaken by it. Electrons initially accelerated by
the front of the laser pulse (Fpar > 0) are decelerated by the back of the pulse
(Fpar < 0). The final electron velocity equals the initial electron velocity: there
is no net acceleration.

Another feature of the proposed scheme is that it allows multiple acceleration
stages. If the laser pulse propagates through a plasma of decreasing density, the
group velocity of laser pulse increases, thereby allowing the pulse to catch up
with accelerated electrons and push them again. If the density gradient is chosen
correctly the particle energy increases by a constant factor after each acceleration
stage.

In order for the proposed scheme to work, the intensity of the laser pulse
must exceed the repelling threshold value [, which is a function of the group
speed of the pulse v, and initial electron velocity ¢!*. As described in Chapter
2, to accelerate electrons with " = 7 using a pulse with Lorentz factor v, =
(1—v2/c®)~'/? = 30, the repelling intensity is 10'°W /cm2. At such high intensities
the oscillatory motion of electrons interacting with the pulse is highly relativistic.

The standard formula for the PM force was derived under the assumption
that the quiver speed of electrons oscillating in the applied electric field is much
less than the speed of light. To justify our model we derive PM equations that
are valid for arbitrary laser intensity. We consider the cases in which the par-
ticle is in a vacuum and a plasma. The new expression for the PM force has a

wide range of applications. For example, the PM force associated with a light



wave of variable amplitude drives many phenomena that occur in inertial con-
finement fusion and particle acceleration experiments. Relativistic sell-focusing,
magnetic-field generation and plasma channeling have received a lot of attention
latelv. All of these effects have been observed and continue to be studied. both
theoretically and experimentally [16]-[20]. The proposed scheme assumes that a
pulse of arbitrary shape propagates without distorting significantly, at a speed
that is less than ¢. Although, as we show in Chapter 2. the time needed for an
electron to finish its acceleration (dephasing time) depends on the pulse profile,
the dominant factors are just the scale length [ of the pulse and the Lorentz fac-
tor ~, associated with the pulse speed. The repelling threshold and energy gain
are independent of the pulse shape, but depend on ~,. Thus, it is important to
determine the pulse speed accurately and self-consistently.

In two dimensions (2D) diffraction is harmful to the P\l scheme, because the
Rayleigh length Ly = 7mw?/A, where w is the pulse width, can be shorter than
the dephasing distance. One must rely on the nonlinear changes in the index of
refraction associated with relativistic channeling (PM expulsion of background
electrons) [16. 21} or focusing (relativistic mass change of the background elec-
trons) [22] to constrain the pulse. In the context of the proposed acceleration
scheme, the radial P\ force tends to expel electrons from the pulse. This expul-
sion could limit the energy of accelerated electrons and increase the divergence
(emittance) of the electron bunch. These 2D effects are important and could
render the scheme impractical. To quantify their importance we develop a 2D
relativistic particle-in-cell (PIC) code and use it to verify the feasibility of the
proposed acceleration scheme.

This thesis is organized as follows: In Chapter 2 a simple one-dimensional (1D)
model is used to describe the new acceleration scheme. Formulas for the threshold

intensity, electron energy gain and dephasing time are derived and analyzed in



detail. A multistage variant of this scheme is also described. Expressions for
the relativistic PM force of a three-dimensional (3D) laser pulse in a vacuum
and a plasma are derived in Chapters 3 and 4, respectively. In Chapter 5 a
new 2D relativistic particle-in-cell code is described. In Chapter 6 the code is
used to make simulations of electron acceleration by a short, wide pulse. These
simulations confirm the predictions of the aforementioned model and show that

P\ acceleration is possible.



Chapter 2

Particle acceleration by a laser

pulse in a plasma

The motion of a charged particle in an electromagnetic field is a well-known
paradigm of physics [23, 24]. Suppose that the field is associated with a laser pulse
of finite extent propagating in a vacuum. As the pulse overtakes the particle, the
particle gains energy and momentum at the expense of the pulse. At the peak
of an intense pulse, the particle has considerable (longitudinal) momentum in
the propagation direction of the pulse. This fact suggests that intense pulses
[1] might be used to accelerate particles. Unfortunately, the energy associated
with the transverse particle motion is wasted and it is difficult to extract the
particle from the middle of the pulse. One cannot simply wait until the pulse has
overtaken the particle completely, because the pulse leaves the particle at rest,
albeit displaced a finite distance in the direction of the pulse. If the pulse is of
finite transverse extent, the particle can be expelled from the pulse [25]. However,
this transverse expulsion is difficult to control.

In this chapter we describe the motion of a charged particle in the field of an

idealized laser pulse propagating through a medium, and show that the particle

~



can be accelerated efficiently and extracted easily. We then discuss brieflv some
issues relevant to electron acceleration in a plasma. For a detailed review of
laser-driven electron acceleration schemes, we refer the reader to the paper by

Sprangle, Esarey and Krall [26].

2.1 Model description

The motion of a particle. of charge ¢ and mass m. in an electromagnetic field is

governed by the equation [27]
d-(uy + a,) = u’d,a, . (2.1)

where u* is the four-velocity of the particle, 7 is the proper time of the particle
multiplied by ¢ and a* is the four-potential of the field multiplied by q/mc>. For

a circularly polarized field

—~~
o
v

N

a* = (0,0, acosé.asin é)/V>2.

We assume that the phase ¢ and amplitude a are functions of f and r alone. We
also make an assumption that longitudinal electrostatic field can be neglected.
(The validity of this assumption is discussed in Sec. 2.5). In this case, it is well
known that

d.(u; +a,) =0, (2.3)

which reflects the conservation of transverse canonical momentum. For a particle

that is in front of the pulse initially and is not moving transversely
u;y =-—a; (24)

For future reference, notice that Eq. (2.4) does not imply that u, attains all

values of a, : it implies that the values of a; to which the particle has access are
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Figure 2.1: Diagram of the relation between longitudinal and transverse momen-
tum implied by Eq. (2.7). The broken line corresponds to r = 1 (vacuum) and

the solid-line corresponds to r = 1.0005 (medium).

reflected in the corresponding values of u;. Using Eq. (2.4), one can rewrite the

first two components of Eq. (2.1) as
) - -
d.v = %atu]_ , dyuy = —gaxui . (2.5)

The right sides of Egs. (2.5) are the /- and z-components of the ponderomotive
(PAI) four-force.

We assume that ¢ =t — s, where s is the inverse phase speed of the pulse,
and @ = a(¢), where ¥ =t — rr and the inverse pulse speed r > 1. Although
these assumptions are based on the known characteristics of a low-intensity pulse,
which may differ from those of a high-intensity pulse, the only requirements of the
following analysis are that the pulse propagates without distorting significantly
and that its propagation speed is less than c. The propagation characteristics of
high-intensity pulses have been studied by Decker and Mori [28].

Since ui is independent of ¢, it follows from Egs. (2.5) that
dr(ry—uy) =0. (2.6)

For a particle that is at rest initially, u) = r(v — 1). Since r > 1, longitudinal
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momentum is produced more efficiently in a medium than in a vacuum. By
combining this result with the definition of the Lorentz factor ~, one can show
that

(r* — 1)u,"; —2ruy +r’u} =0. (2.7)

[t follows immediately that

r+r(l —(r? -1)u?]/?

r2 -1

(2.8)

ll., =

and

r2+1—(r2 - 1)u?]/?
5 .

r:—1 (2.9)

Y=

Equation (2.7) describes an ellipse that intersects the origin, and has semi-
major and semi-minor axes of length r/(r> — 1) and 1/(r® — 1)!/2. respectively, as
shown in Fig. 2.1. The — signs in Eqs. (2.8) and (2.9) correspond to the left half
of the ecllipse, whereas the + signs correspond to the right half. Tt follows from
Eqs. (2.8) and (2.9) that vy = 1/r at the intermediate point B. This information
allows the particle motion to be determined qualitatively.

Initially, the pulse overtakes the particle. As it does so, u3 increases and the
representative point (u . |u]) moves from A, which corresponds to the leading
edge of the pulse, toward B. If u] < 1/(r®> — 1) at the peak of the pulse, the
representative point does not reach B. Since vy < 1/r, the pulse overtakes the
particle completely and the representative point moves back toward A, which now
corresponds to the trailing edge of the pulse. Eventually, the particle is at rest.
This scenario is illustrated in Fig. 2.2(a). However, if ©2 = 1/(r®> — 1) before
the particle reaches the peak of the pulse, the particle is repelled by the pulse,
because the z-component of the PM four-force is positive, and the representative
point continues toward C, which corresponds to the leading edge of the pulse.
Eventually, u, =0, uy = 2r/(r?> = 1) and v = (r2 + 1)/(r2 — 1). This scenario is

illustrated in Fig. 2.2(b).
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(b)

Figure 2.2: Tllustration of the particle motion for a low-intensity pulse (a) and a

high-intensity pulse (b).

For reasons that will become clear shortly, consider the acceleration of a par-
ticle that is travelling in the direction of the pulse with initial momentum u, and
initial energy ~v,. The analysis of particle acceleration is simplest in the pulse
frame, in which the four-potential is time-independent and, hence, the particle
energy is constant: energy is exchanged between the longitudinal and transverse
degrees of freedom. Because the four-potential is transverse, it has the same
amplitude in both the laboratory and pulse frames. Let ~p = r/(r* — 1)'/2 be
the Lorentz factor associated with the pulse and up = (7% — 1)/2. Initially, the
particle is moving to the left in the pulse frame. The particle will be repelled
if. at some point in the pulse. the energy associated with its transverse motion
equals its initial energy. In this case the particle regains its initial energy as it
moves to the right. It follows from these observations and Eq. (2.2) that, in the

laboratory frame, the repelling threshold
(l% = 2[(‘/1’”/,1 - UPUA)2 - 1] (2.10)
and the corresponding gain in particle energy

07 = 2(upva — TPUPUL) - (2.11)
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Figure 2.3: Threshold intensity a% required to repel the particle (broken line)

and the corresponding gain in particle energy (solid line) plotted as functions of
the particle injection energy for the case in which vp = 30. Energy is measured

in units of the particle rest mass.

The energy gain and repelling threshold are plotted as functions of the initial
energy in Fig. 3, for the case in which vp = 30. Energy is measured in units of
the particle rest mass. If the particle is at rest initially, a3, = 2(7% — 1) = d7:
the energy gain is large, but so is the required pulse intensity. Since the repelling
threshold decreases more rapidly than the energy gain as the initial energy is in-
creased, the intensity requirement can be minimized by injecting pre-accelerated
particles. For example, if the injection energy is 7, the repelling threshold is 8.3
and the energy gain is 120. If the injection energy is 135, the repelling threshold
is 1.1 and the energy gain is 45. With a3 fixed, the injection energy required
to ensure that the particle is repelled by the pulse and the corresponding energy

gain are functions of vp. By inverting Eq. (2.10), one finds that
Ya =pis = [(7p = ek — DI . (2.12)

where g = (14+4%/2)"/? is a measure of the pulse intensity. When vp > ug > 1,
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Figure 2.4: Injection energy required to ensure that the particle is repelled (a)
and the corresponding gain in particle energy (b) plotted as functions of the
Lorentz factor associated with the pulse for the case in which a% = 10. Energy
is measured in units of the particle rest mass. The broken lines represent the
approximate results (2.13) and (2.14), whereas the solid lines represent the exact

results (2.12) and (2.11).
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Eq. (2.12) reduces to

177 1/4 2
./_4z7(f_P+&)+_<f_§+ﬂ_g_ ) _ (2.13)
2\ug  vp 8\ug  vp  TPHB

When ~p ~ pug the first and second terms of Eq. (2.12) are adequate and when

“p > pp the first and third terms are adequate. In the latter limit Eq. (2.11)
reduces to

Ov = 2vpup — vp/Usp - (2.14)

The injection energy and energy gain are plotted as functions of ~p in Fig.

2.4, for the case in which a4 = 10. The approximate formulas (2.13) and (2.14)

are accurate, and show clearly how the injection energy and the energy gain scale

with 4p and pug.

2.2 Particle motion in a planar field in a plasma

In this section we investigate the motion of the particle in a planar field in more
detail. We assume here that particle has nonzero momentum uy initially and it
is moving ahead of the pulse.

By combining Eq. (2.6) with the definition of 7, one can show that

r(r"/o—llo):F(U

r2 —1
u = Tzt Fre (.15)
r-—1
where
w = [(rvo — up)? — (r? = 1)(1 + v?)]*/2. (2.16)

In Egs. (2.15) the — sign applies to the case in which v > ru, which corresponds
to a particle that is moving more slowly than the pulse, and the + sign applies

to the case in which v < ru, which corresponds to a particle that is moving more
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quickly than the pulse. By using the fact that 1 = +2 — u2, one can rewrite Eq.

(2.16) in the convenient form
w = [(70 — rug)® — (r* = 1)?)'/2. (2.17)

For the case in which vy = 1 and ug = 0, Eqs. (2.15) and (2.17) reduce to the
corresponding equations of Sec. 2.1. A particle that is moving more slowly than
the pulse initially will be repelled by the pulse if w = 0. For this to happen the

pulse intensity must equal the repelling intensity

a® = 2(vo — rug)*/(r* — 1), (2.18)
in which case the gain in particle energy

dv = 2(vo — rug)/(r* = 1). (2.19)

For completeness. a covariant analysis of particle motion in a circularly-polarized
field is given in Appendix 2A and a brief description of particle motion in an
clliptically-polarized field is given in Appendix 2B. Particle motion in a planar
electrostatic field is given in Appendix 2C.

Equations (2.4). (2.15) and (2.17) define u* as a function of ¢. By combining

the equation d.¢» = v — ru with Eqgs. (2.15), one can show that
dr [dy = £1/w(¥), (2.20)

where the + sign applies to the case in which v < ru and the — sign applies to
the case in which v > ru. If the solution of Eq. (2.20) can be inverted, u* can
be expressed as an explicit function of 7.

To illustrate the particle motion we consider the simple profile

a(y) = esin(wy/2lr), (2.21)
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where ¢? is the peak intensity of the pulse and ! is its full-width-at-half-maximum.

For this profile
w(¥) = (70 — ruo)[1 — m?sin*(ww/20r)]'/?, (2.22)
where
m? = (1 — 1)€*/2(70 — rug)*. (2:23)

is the ratio of the pulse intensity to the repelling intensity.
When m < 1 the pulse overtakes the particle completely. In this case ¥ varies

between 0 and 2/r, and the solution of Eq. (2.20) is
T(¥) = [2lr/7 (70 — rue)] F(ww/2lr,m), (2.24)

where F denotes the incomplete elliptic integral of the first kind, of modulus m
[29]. Tt follows from Egs. (2.15) and (2.17) that

r(rvo — ug)7(¥) — ¢

tg) =

rz2 —1
Yo — T(¢) —rv
o(g) = {0 ‘r‘,_‘j)_(;) : (2.25)

The particle motion is illustrated in Fig. 2.5 for the case in which ~p = 30,
0 = 7 and ¢ = 7. [The Lorentz factor ~p is defined in the first of Eqs. (2.15).]
In Fig. 2.5(a) the phase, normalized to /r, is plotted as a function of time,
normalized to 43I. As the particle is accelerated by the front of the pulse, the
rate of phase slippage decreases. However, since the peak intensity of the pulse
is lower than the repelling intensity, the particle speed never equals the pulse
speed and the pulse overtakes the particle. As the particle is decelerated by the
back of the pulse, the rate of phase slippage increases. It is evident from Fig
I(a) that the deceleration time equals the acceleration time. In Fig 2.5(b) the
longitudinal momentum is plotted as a function of the normalized time. Although

the particle speed never exceeds the pulse speed, the energy associated with the
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Figure 2.5: Particle trajectory for the case in which vp = 30 and vy = 7. The
pulse intensity e = 7 is slightly lower than the repelling intensity (2.18). (a)
Normalized phase ¢/Ir plotted as a function of the normalized time ¢/~321. (b)

Longitudinal momentum u plotted as a function of the normalized time.
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Figure 2.6: Particle trajectory for the case in which vp = 30 and v = 7. The
pulse intensity e* = 10 is slightly higher than the repelling intensity (2.18). (a)
Normalized phase ¢/Ir plotted as a function of the normalized time t/~v3l. (b)

Longitudinal momentum u plotted as a function of the normalized time.
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transverse particle motion allows the particle momentum to exceed the pulse
momentum. Because the longitudinal momentum is a svminetric function of
time. the deceleration distance equals the acceleration distance.

When m > 1 the particle is repelled by the pulse. In this case ¢ increases from
0 to (2/r/7)sin~!(1/m) as the particle ascends the PM potential and decreases
from (2/r/z)sin~'(1/m) to 0 as the particle descends the P\ potential. The

solution of Eq. (2.20) is

' { 2lr/mm(vo — rug)|F (6, 1/m),
r(w) = (2.26)
2lr /mm(ve — rup)j2K(1/m) — F(8.1/m)],
where
8(v) = sin~[m sin(z ¢ /2Ir)] (2.27)

and K" denotes the complete elliptic integral of the first kind, of modulus m [29].
The first form of Eq. (2.26) applies to the ascent and the second form applies
to the descent. Equations (2.25) apply to both the ascent and descent, provided
that 7 is defined by Eqgs. (2.26) and (2.27).

The particle motion is illustrated in Fig. 2.6 for the case in which vp = 30.
v = 7 and ¢ = 10. In Fig. 2.6(a) the normalized phase is plotted as a function
of the normalized time. Initially, the pulse overtakes the particle and the rate of
phase slippage is positive. Since the peak intensity of the pulse is higher than the
critical intensity, the particle is accelerated until its speed equals the pulse speed
and the rate of phase slippage is zero. Subsequently, the particle overtakes the
pulse and the rate of phase slippage is negative. The descent time is longer than
the ascent time because the time dilation associated with a particle moving faster
than the pulse is larger than that associated with a particle moving slower than
the pulse. In Fig. 2.6(b) the longitudinal momentum is plotted as a function of
the normalized time. Since the particle does not reach the peak of the pulse, the

x component of the PM force is always positive and the longitudinal momentum
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of the particle increases monotonically. Because the longitudinal momentum is
an asymmetric function of time, the descent distance is longer than the ascent

distance.

2.3 Dephasing time of an accelerated particle

The analysis of previous section shows how an intense pulse repels a charged
particle that is in front of the pulse. The relation between the pulse intensity,
the particle injection energy and the gain in particle energy was studied [30].
In this section the time required for the pulse to catch and repel the particle
and. subsequently, for the particle to outrun the pulse, is studied. This time is
referred to as the dephasing time and is denoted by T. The distance traveled by
the particle during the dephasing time is referred to as the dephasing distance
and is denoted by X.

The pulse-frame energy and momentum of the particle are related to the

laboratoryv-frame energy and momentum by the equations

! I
T =OPT T Upd, U =TpU — UpT,

—

2.28)

where

,-/Pzr/(r'.’_l)l/'.l . up = 1/(,.2_1)1/2' (2'29)

In these equations 7p is the Lorentz factor associated with the pulse speed 1/r
and up = (4% — 1)!/2. If one uses the linear group speed of the pulse to estimate
the Lorentz factor, vp = wy/w,, where wy is the carrier frequency of the pulse
and w, is the electron-plasma frequency [31].

In the pulse frame u} is time-independent. Tt follows from the first of Eqs.

(2.5) that v’ is constant and, hence, that (u’)?+v? = (¥/,)%. Since dz’/dt' = v/,



it follows that
T =2+ / = dr’ )
Aoy [(0h)? — ud ()2

In Eq. (2.30) the factor of 2 arises because the pulse-frame descent time equals

(2.30)

the pulse-frame ascent time. The factor of +/, arises because of the difference
between proper time and pulse-frame time. Provided one ignores the distinction
between momentum and velocity, the integral in Eq. (2.30) represents the ascent
tirne of a nonrelativistic particle in the potential well «2 (z'}/2. In the pulse frame

a = esin(—7z’'/2l"), where I’ = vpl. For this profile
T =2+,(2I'/7)(V2/e) K (V2u',/e). (2.31)

The factor of 2I'/7 arises because the PM! force associated with the pulse is
inversely proportional to the pulse length. Although Eq. (2.31) is complicated,
the origin of each factor is well understood.

In the pulse frame the particle begins and ends its interaction with the pulse

at point A. Since X" = 0, it follows that
T =~pT'. X =upT'. (2.32)
[t is convenient to define the normalized dephasing time
T = (4V29/me) K (V2u!y fe), (2.33)

which is the dephasing time divided by v2/. The factor of [ was due to the inverse
dependence of the PM force on the pulse length. One factor of vp was due to the
Lorentz transformation of the pulse length from the laboratory frame to the pulse
frame and the other factor was due to the Lorentz transformation of the dephasing
time from the pulse frame to the laboratory frame. These factors do not depend
on the physical origin or shape of the potential well in which the particle moves.

Thus, it was inevitable that they should be the same as the factors that control






