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Abstract

In Inertial Confinement Fusion (ICF), a spherical shell is accelerated inward
by laser irradiation, and the shell outer surface is unstable to the Rayleigh-Taylor
(RT) instability. During the acceleration phase, the instability can be seeded by
both inner and outer surface nonuniformities. The seeding of the instability by the
inner surface nonuniformities (typically referred to as “feedout”) is investigated
both analytically and numerically. A simple formula relating the outer surface
distortion to the inner surface roughness is derived for long wavelength perturba-
tions satisfying the condition kd < 1, where k& is the perturbation wavenumber,
d is the shell thickness. The validity of the analytic feedout formula derived for
long wavelength modes is extended to the short wavelengths by fitting the results
of two-dimensional Lagrangian simulation.

When the laser is turned off and the shell is decelerated by the large pressure
building up in the center of the capsule, the shell inner surface is RT unstable. The
dynamics of the shell and hot-spot during the deceleration phase is investigated
both numerically and analytically. It is shown that mass ablation off the shell inner
surface significantly reduces the growth rates of the deceleration phase Rayleigh-
Taylor instability. It is also found that for typical direct drive capsules designed
for the National Ignition Facility, the instability of Legendre modes with [ > 90 is

suppressed by the ablative stabilization.
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Chapter 1

Introduction.

In inertial confinement fusion (ICF, see [1, 2]), a spherical shell (the “capsule”)
of cryogenic deuterium and tritium (DT) filled with DT gas is accelerated inward
by direct laser irradiation (“direct drive”, figure 1.1) or X-rays produced by a
laser irradiated high-Z enclosure (“indirect drive”). The laser pulse begins with a
constant, low-intensity foot designed to drive an ionizing shock wave through the
capsule. While converging to the center of the capsule, the shock heats up the
ionized gas to temperatures of the order of a few keVs. Such a low density hot
plasma is commonly referred to as the “hot-spot”. While the shock is propagating
in the gas, the laser power rises and the shell is accelerated inward. The hot-spot is
heated up further, reaching thermonuclear temperatures, by the compression work
provided by the incoming shell.

For a DT fuel, the primary thermonuclear reaction produces a 3.5 MeV alpha

particle (Hes) and a 14 MeV neutron:
D+ T — Hes +n (1.1)

While the energetic neutrons leave the capsule, the alpha particles are slowed down

1



Ablation

Figure 1.1: The target is irradiated by laser beams and accelerated inwards due to

the mass ablation off the surface.

by collisions with the surrounding electrons and release part or all their energy to
the plasma (“thermonuclear heating”). Typically, a significant fraction of alpha
particles is slowed down within the hot-spot when the alpha mean free path is less
than the hot-spot radius. When the hot-spot material has reached temperatures of
about 10keV and areal densities of about 0.3gr/cm?, the thermonuclear heating is
sufficient to overcome all the energy losses from the hot-spot leading to a thermal
instability and a rapid increase in temperatures up to 20 <+ 30keV. The onset of
such a thermal instability is commonly referred to as “thermonuclear ignition” and
leads to an almost complete burn of the hot-spot material on a picoseconds time
scale.

Because of the high temperatures and relatively low densities, a fraction of the
alpha particles escapes the hot-spot and is deposited on the shell inner surface.
Furthermore, a large conductive heat flux leaving the ignited hot-spot is also ab-

sorbed by the shell material near the inner surface. Both these effects cause a



rapid heating of the shell surface up to thermonuclear temperatures triggering the
propagation of a burn wave through the dense shell. The burn wave is supersonic
(see [3]) and heats up the whole shell to thermonuclear temperatures. At this
point the burning shell starts expanding outward on a time scale proportional to
the time of the sound wave propagation through the shell. As the shell exgpands,
it cools down, disassembles and the thermonuclear burn comes to a stop. If the
shell areal density is larger than ~ 1gr/cm?, the disassembling time is sufficiently
large that a significant fraction of the shell material (larger than 10%) is b-urned,

leading to a substantial energy release in the form of neutron energy.

1.1 Acceleration and Deceleration Phase of ICF
Implosions.

In both direct and indirect drive ICF, the laser pulse starts from a constants, low-
intensity foot designed to drive a uniform shock through the shell. After the shock
breaks out on the shell inner surface, it expands inward launching a shock in the
gas and a rarefaction wave in the shell. As the rarefaction wave travels acroess the
shell, the shell outer surface moves at approximately constant velocity. When the
rarefaction wave reaches the shell outer surface, the latter starts acceleratimeg and
the so called “acceleration phase” begins. At about the shock break-out tirme, the
laser power begins to rise first slowly and then more rapidly in order to keep the
shell close to the shock front traveling inside the gas. A second shock, origimating
within the shell, is launched during the initial pulse rise and merges with th e first
shock before reaching the center of the capsule. The acceleration phase ends when

the laser is turned off and the shell starts traveling at approximately cormstant



velocity. Standard direct-drive pulse designs make use of such a sequence of two
shocks merging into one. Instead, the latest pulse designs of indirect-drive ICF
make use of a sequence of four shocks coalescing into one before reaching the
center.

In both direct and indirect drive ICF, the single shock resulting from the mul-
tiple shock coalescence travels into the gas in the form of a strong shock; i.e.
AP/P, > 1 where AP is the pressure jump across the shock and P, is the gas
pressure before the shock. Such a shock is reflected off the center of the capsule
and subsequently is reflected off the incoming inner shell surface which in turn is
impulsively decelerated. The shock reflected off the shell travels towards the cen-
ter to be reflected there again and subsequently reflected a second time from the
shell. At each reflection off the shell, the latter is impulsively decelerated and the
shock gets weaker until the pressure jump across the shock front is smaller than
the pressure before the shock (AP/P, < 1). We denote the time interval corre-
sponding to the multiple shock reflections as the “impulsive deceleration phase”.
Typically, the reflected shock becomes weak after the first or second reflection off
the shell. At this point the material enclosed by the inner shell surface develops a
fairly uniform pressure profile and is referred to as the hot-spot. After the second
shock reflection off the shell, the hot-spot is formed and its pressure is high enough
for the shell velocity to be lower than the hot-spot sound speed; i.e. the flow is
subsonic. When the hot-spot is formed, the shell is decelerated in a continuous (not
impulsive) manner and acts like a piston on the hot-spot. This continuous slowing
down of the shell up to the stagnation point occurs over a period of a few hundred
picoseconds and is referred to as the “continuous deceleration phase”. Figure 1.2
shows the time evolution of the deceleration g of a shell designed for direct drive

ignition (see [4]) on the National Ignition Facility (NIF). The time ¢ = 0 repre-



10000
':\
w2
8000
E
3 *— impulsive
= 6000 -
50 deceleration
4000 \
2000 .
/J continuous
N deceleration
-0.4 -0.3 -0.2 -0.1 ]

Time (ns)

Figure 1.2: Time history of the inner surface deceleration obtained in 1D numerical
simulations of a NIF-like capsule. ¢ = 0 is the stagnation time. The impulsive

deceleration phase is followed by the continuous deceleration phase.

sents the stagnation point and the continuous deceleration starts at about 200ps
before stagnation. During the deceleration phase, the hot-spot pressure, density
and temperature keep increasing until reaching the ignition conditions. If the shell
is sufficiently dense, the ignited hot-spot triggers a burn wave propagating in the
shell. A significant fraction (> 10%) of the shell mass undergoes thermonuclear
burn if the shell areal density exceeds 1gr/cm?2.

If the shell surfaces were perfectly smooth and the implosions were spherically
symmetric, thermonuclear ignition and burn could have been easily achieved with
lasers in the kilojoule energy range. Unfortunately, the shell is unstable during the
implosion and small imperfections of the shell surface grow rapidly leading to the
angular distortion, symmetry breaking and reduced compression of the capsule.

In both direct and indirect drive, the shell material is ablating off the surface



into a low density plasma and the rest of the shell is pushed inward according
to the conservation of momentum (“rocket effect”). In the frame of reference of
the ablation front (i.e. the outer shell surface), the net inertial force is directed
from the heavy (compressed) to the light (expanding) material, and the target
surface is hydrodynamically unstable, the phenomenon being generally known as
the Acceleration Phase Rayleigh-Taylor (APRT) instability.

Later in time, when the shell is slowed down by the rapid increase in the hot-
spot pressure, the inertial force in the inner shell surface frame of reference is
directed from the shell to the hot-spot, and the inner surface is Rayleigh-Taylor
unstable [Deceleration Phase Rayleigh-Taylor (DPRT) instability]. Since thermal
energy is lost from the hot-spot through heat conduction to the inner shell surface,
the distortion induced by the deceleration phase RT instability can significantly
increase the inner surface area and enhance the heat losses from the hot-spot.
Furthermore large amplitude surface perturbations can develop into spikes of cold
shell material reaching into the center of the hot-spot leading to a mixing of the
cold and hot plasma and quenching of the hot spot ignition. The fast growing,
short wavelength modes can also reduce the compression work of the shell by
channeling inward radial kinetic energy into lateral kinetic energy. In other words,
a fraction of the shell energy could be transformed into turbulent kinetic energy
by the instability making less shell energy available for the compression work on

the hot-spot.

1.2 Rayleigh-Taylor Instability.

During both the acceleration and the deceleration phases of the implosion, the

shell is unstable to the Rayleigh-Taylor instability. The latter is the instability



occurring at the interface between two superimposed fluids of different densities in

the presence of a gravitational field directed from the heavy to the light fluid.

Unstable
surface

Figure 1.3: Rayleigh-Taylor unstable configuration. The gravitational g directed
from the heavy to the light fluid drives the Rayleigh-Taylor instability of the fluid

interface.

If the two fluids are ideal (non dissipative) and incompressible, the instability
is commonly known as a “classical” Rayleigh-Taylor instability. In the classical
RT instability with constant gravitational field, a small (i.e. linear) sinusoidal
perturbation would grow exponentially in time at a rate depending on the gravi-
tational acceleration g, the perturbation wavelength A and the fluid densities p,
pr where the subscripts h and [ indicate the heavy and light fluid respectively. If
the two fluids are separated by a sharp interface and their densities are uniform,

the exponential linear growth rate of the instability can be written as

v = \/Arkg (1.2)

where k£ = 27/ is the perturbation wavenumber, and

Pr — Pi
Ap = —— 1.3
T Pr + P (13)



is the Atwood number (see [5]). It is important to notice that the growth rate
increases with the mode wavenumber thus indicating that short wavelength modes
have the largest growth rates. However, if the interface between fluids is not sharp
and the density profile smoothly changes between the heavy and the light fluid,
the growth rate of short wavelength modes tends asymptotically to the constant
value (see [6])

= |9

where L., = min|p/(dp/dy)| is the minimum value of the density gradient scale
length. Equation 1.4 is a good approximation of the growth rate as long as the
mode wavenumber satisfies the condition kL,, > 1 while the equation 1.2 repre-
sents the growth rates for modes with £L,, < 1.

During the acceleration phase, the outer shell surface is unstable because in its
frame of reference, the inertial force is equivalent to a gravitational field pointing
from the heavy shell towards the low density ablated plasma. However, the devel-
opment of the Rayleigh-Taylor instability is quite different from the classical case.
In direct drive ICF, the laser energy is absorbed in the coronal plasma at the crit-
ical surface where the laser frequency equals the plasma frequency. A large heat
flux is conducted through the low density plasma to the shell outer surface. The
shell material is heated up and expands off the outer surface (the ablation process)
inducing a rocket effect and accelerating the shell inward. The heat conduction
and the ablation process occurring at the shell outer surface reduce the Rayleigh-
Taylor growth rate to a level significantly below its classical value (see (7, 8, 9]).
The instability occurring at the shell outer surface during the acceleration phase
is also referred to as the “ablative” Rayleigh-Taylor instability.

The theory of the ablative RT instability has been carried out in [10, 11, 12,



13, 14]. The growth rates are calculated for an ablatively accelerated planar foil.
The foil is treated as a fully ionized collisional plasma slab with a finite nonlinear
thermal conductivity:

k(T) = rRT” (1.5)
where K and v are constant. The ablative flow is typically subsonic with respect to
both the shell and the ablated plasma sound speeds so that the pressure variations
through the ablation front can be neglected (isobaric approximation, see [15]). Us-
ing this approximations, the linearized conservation equations (mass, momentum
and energy) are solved using sophisticated asymptotic methods (boundary layer
and WKB techniques). In spite of the complicated analytic form given in [10], the

growth rate can be fitted by one of the two following formulas:

Y= a\/E— BkV, (1.6)

[k
Y=« ——1+,'3L — PkV, (1.7)

where g is the foil acceleration and V, is the velocity at which the ablation front
advances in the foil. Given the mass ablation rate off the shell 7n (=mass ablated
per unit time per unit surface), the ablation velocity is determined by the ratio

between the ablation rate and the unablated foil density
Vo = Y (1.8)
The coefficients « and B are of order unity and, as shown in [10], depend on the foil
power index for thermal conduction v and a dimensionless combination of ablation
velocity, foil acceleration and density gradient scale length. Such a dimensionless
parameter is known as Froude number:
V2

Fr = gzo (1.9)
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where Ly is a length proportional to the density gradient scale length

VV

= me (1.10)

Lo

The length Ly is also related to the thermal conductivity, the ablation velocity and
the ratio of specific heats I':
[ —1ARTY,;

1.11
L' proaVa (1.11)

L0=

where A = m;/(1 + Z), m; is the ion mass and Z is the ato-mic number. As it
is shown in [10], the growth rate of accelerated foils with large Froude numbers
(Fr > 1) is better fitted by a formula of the kind 1.6 while €he foils with small
Froude numbers (F'r < 1) obey a formula of the kind 1.7. The parameters o and
B for different values of the power index v and Froude number:s are plotted in the
figures 5-6 of [10]. For a cryogenic DT target, the heat transport is dominated by
electronic heat conduction and the power index is v = 5/2. The ablation velocity is
large and the Froude number is well above unity (Frpr ~ 4+ 5). The parameters
« and B can be deduced from the figure 5 of [10] leading to the following growth

rate formula:
vpr = 0.94y/kg — 2.7kV, (1.12)

The formula 1.12 is remarkably close to the one derived in [9] by Takabe et.al. by
means of fitting the results of the numerical solution of the linearized conservation
equations (Yrekase = 0.9vkg — 3kV,).

For higher-Z materials such as plastic (CH) commonly used in laser experi-
ments, the energy transfer is dominated by radiation transport. This can also
be described by an effective thermal conductivity with a pow-er law dependence
on temperature. As reported in [11], the power index v for pLastic is near unity,

the ablation velocity is small and the Froude number is typically less than unity
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Figure 1.4: The inner surface of the shell is unstable during the deceleration phase.

(Fr =~ 0.3). The growth rate for plastic is better fitted by a formula of the kind
1.7witha=1and = 1.7,

_ [_kg
v = [T hL 1.7V, (1.13)

In conclusion, the growth rate of the ablative RT instability in an accelerated
planar foil can be easily determined using the results of [10] once the ablation
velocity, acceleration, density gradient scale length and power index for thermal
conduction are known.

During the deceleration phase, the imploding shell is slowed down by the large
pressures building up inside the hot-spot. In the shell frame of reference, the
inertial force is directed from the dense shell material towards the light hot spot
plasma and the shell inner surface is unstable to the Rayleigh-Taylor instability.

It is common wisdom that the deceleration phase RT instability is classical and
the finite density gradient scale length is the only stabilizing mechanism. Follow-
ing Lindl’s work [2], the DPRT instability growth rates are approximated by the
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_ kg
Y= NV1xkL, (1.14)

where k is the perturbation wavenumber. In order to satisfies the periodicity con-

following heuristic formula:

straint, the mode wavelength must be an integer fraction of the shell circumference
(A =27R/l where [ is an integer), and the mode wavenumber is k£ ~ [/R, R is the
hot-spot radius. According to [2], the density gradient scale length is a significant
fraction of the hot-spot radius: L ~ 0.1 = 0.2R. Such a large density gradient
scale length leads to a significant reduction of the instability growth rates. The
perturbation grows over a time ¢ during which the shell is traveling a distance
A ~ gt?/2. Lindl argues that the shell displacement during the deceleration phase
is approximately equal to the final hot spot radius R thus concluding that A ~ R
and the RT growth factor is

21

e’ = gV 1+oA (1.15)

According to equation 1.15, short wavelength modes (I > 1) are unstable and
their growth factor is approximately eVl0 ~ 24, Very recently Lobatchev and
Betti have shown in [17] (see also Chapter 3 of this thesis) that the deceleration
phase instability is not classical, because the mass ablation off the inner shell
surface significantly reduces the RT growth rates and suppresses short wavelength
modes (see [12]). Mass ablation is caused by the heat flux leaving the hot-spot
and depositing on the shell inner surface. We have calculated the ablation velocity
and the shell density gradient scale length during the deceleration phase. Then
using the ablative RT growth rates of [10], we have calculated the growth rates and
compared them with the results of numerical simulations. The simulations have
been carried out using the 2D Eulerian code described in Chapter 4. Contrary to

the equation 1.14, it is found that for direct drive NIF-like capsules, the unstable
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spectrum exhibits a cutoff at [ ~ 90, i.e. all modes with { > 90 are stable.

1.3 Seeding of the Rayleigh-Taylor Instability.

The APRT instability can be seeded by both rear and front surface nonuniformities.

Recent progress in laser smoothing and target manufacturing techniques has
significantly reduced the laser intensity and front surface nonuniformities. How-
ever, the rear surface of cryogenic targets is usually very rough and provides the
main seed for the APRT instability in both direct and indirect drive ICF.

Although only the outer shell surface is unstable during the acceleration phase,
the inner surface perturbations propagate through the target and reach the outer
surface where they grow exponentially. This process is typically referred to as
“feedout”. The feedout is induced by the initial shock wave propagating through
the shell. When the laser is turned on, a shock wave travels from the outer to the
inner surface leaving the compressed material in motion with a constant velocity.
After the shock breaks out on the inner surface, a rarefaction wave propagates
toward the outer surface. After the rarefaction front reaches the outer surface, the
latter starts accelerating and becomes unstable to the RT instability. If the rear
surface is rippled, the reflected rarefaction wave is also rippled. When the rippled
rarefaction front reaches the outer surface, it imprints a perturbation on it which
grows exponentially during the acceleration phase. It is one of the goals of this
work to develop a physical understanding and quantitative prediction of the RT
seeding by rear surface nonuniformities.

After the perturbation is seeded, it starts to grow exponentially as Ae", and
the mathematical definition of the seed can be introduced as the coefficient A

before the exponential term in the APRT instability growth factor.
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Figure 1.5: Mode spectrum at the beginning of the acceleration phase according
to the ORCHID simulations. The feedout provides the main RT seed for modes
with [ < 20.

Figure 1.5 (figure 1 of [18]) demonstrates that the feedout is the main seed of
the APRT for the long-wavelength (! < 20) nonuniformities in NIF targets.

The negative impact on capsule performances induced by the RT instability
seeded by rear surface nonuniformities have been estimated using two dimensional
numerical simulations, the simulations have been performed with the LLE hydro-
dynamic code ORCHID (see [24]). The results are summarized in figure 1.6 where
the gain of a NIF-like capsule is plotted versus the magnitude of the initial rear
surface roughness. Observe the rapid fall off of the energy gain with the magni-
tude of the rear-surface perturbations demonstrating the detrimental effect of the
feedout on target performance.

The theory of the rear-surface perturbation feedout has been developed by
Betti, Lobatchev and McCrory in [25] and Chapter 2 of this thesis. The analysis
has been carried out for long wavelength perturbations of planar foils accelerated
by a constant laser irradiation. Long wavelength modes are characterized by the

size of their wavelength (or inverse wavenumber k) in relation to the foil thick-






