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Abstract

Optoelectronic microwave devices take advantage of the interaction of op-
tical and microwave electric fields via the intermediary of mobile charge
carriers in a semiconductor. This combination of photons and microwaves
makes possible many unique applications such as photoconductive switch-
ing, which allows unparalleled optical control of electric fields from dc to
THz. However, along with these expanded possibilities also comes greater
difficulties in modeling and characterization. For example, the density and
spatial distribution of the mobile charge carriers evolve on time-scales com-
parable to the microwave electric fields. In this regime the assumptions ap-
plied to conventional linear models of time-invariant microwave filters and
frequency-invariant modulators cannot be used. To conquer this difficulty,
techniques of analysis and synthesis using general time- and frequency-
varying linear models were developed and applied.

This thesis introduces a technique for the measurement of time-varying
systems based on general time- and frequency-varying models. The tech-
nique allows characterization of a class of microwave devices that vary tem-
porally and spectrally on time-scales comparable to the microwave period,
such as optoelectronic microwave silicon switches. This characterization is
presented as a superset of the conventional microwave S parameter charac-
terization technique.

To shape laser pulses, the University of Rochester’s Laboratory for Laser



Energetics’ OMEGA laser fusion project uses photoconductive microwave
switches to generate and control shaped microwave pulses. By applying the
above analytical technique we were able to observe, for the first time, the re-
lationship between transient switching mechanisms (e.g., re-establishment
of contact depletion capacitance) and microwave pulse shape. Our ability
to directly observe the transient evolution of switch transmission proper-
ties allowed the development of a time- and frequency-varying linear switch
model. By relating the model to switch fabrication conditions, we were able
to improve the fabrication procedures. Fabrication and characterization of
successive generations of switches permitted optimization of the switch per-
formance through an iterative fabrication process. Through optimized per-
formance, the bandwidth of the optical pulse shapes was increased from
3 to 6 GHz. Along with bandwidth, the dispersion of the switch trans-
mission was reduced. The developed switch model and the associated ex-
perimental characterization technique are accurate under many different
operating conditions, from cw to SBS-steepened fast-rise-time optical illu-
mination. The ultimate performance limits of the OMEGA pulse-shaping

switches were also outlined.
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Chapter 1

Introduction

We describe the development and application of a characterization tech-
nique to the optimization of the transmission function of optoelectronic mi-
crowave silicon switches (OMSS’s). In this thesis and in other publications,
OMSS’s will also be referred to as photoconductive switches (PCS) and
optically-activated silicon switches (OASS), depending on the performance
aspect being emphasized. This measurement technique can be used to de-
termine the properties of similar semiconducting microwave devices such
as photoconductive attenuators and phase shifters [1, 2, 3, 4, 5], as well as
other devices that effect the propagation of microwave electrical fields, ei-
ther through the influence of mobile charge carriers or through other mech-
anisms independent of the propagating electric field.

The OMSS characterization and optimization is accomplished by ap-
plying a novel technique which accounts for variations in the temporal and
spectral response, unlike conventional Laplace-transform-based approaches
which require either time or frequency invariance within a windowed re-
gion. Our more general characterization allows us to achieve an accurate
and intuitive measurement of the changing OMSS properties. With this
measurement in hand we are then able to find a suitable device model.
The elements of the (lumped-element) model correspond to properties of
the OMSS that can be optimized, so that a direct relationship between fab-

rication and performance can be realized.
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We show the complete characterization of an example device: OMSS’s
used on the OMEGA laser fusion system at the University of Rochester’s
Laboratory for Laser Energetics (LLE) for laser pulse-shaping. Our char-
acterization, despite temporal and spectral variations comparable to the
transmitted signal’s period and bandwidth, allowed us to observe for the
first time the mechanisms responsible for the performance limitations. Based
on these observations we modified the OMSS design parameters. Our mod-
ifications led to a deeper understanding of OMSS performance principles

and to substantial performance improvements.

1.1 Motivation

The investigation of OMSS characterization was driven by the observed per-
formance limitations of OMSS’s in the pulse-shaping system of the OMEGA
laser. A block diagram of the OMEGA front-end, including laser pulse
shapes before and after pulse shaping, is shown in Fig. 1.1. By measuring
shaped pulses at various points in the pulse-shaping system, it was deter-
mined that the OMSS’s were the foremost element limiting the optical pulse
envelope bandwidth. The desired properties of OMSS’s relevant to OMEGA
are their ability to: a) hold off large (>100 V) bias voltages while in the
OFF (unilluminated and non-conducting) state, b) generate long (>3 ns)
electrical pulses with short (<30 ps) transients during turn-on (illumina-
tion), and ¢) transmit or pass these pulses with minimal distortion while in
the ON (illuminated and conducting) state. The temporal pulse length and
risetime of the shaped pulses correspond to a 3-dB transmission frequency
response that extends from approximately 0.1 to 10 GHz. The bandwidth of
the shaped pulse can be limited by the OMSS’s in two ways. First, the high-
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frequency end of the pulse bandwidth is directly related to the leading edge
of the electrical square pulse, which is generated by the initial OMSS turn-
on: delays in the turn-on transition translate into reduced bandwidth. Sec-
ond, changes in the complex OMSS transmission (amplitude decay or phase
dispersion) that occur when the shaped pulse passes through the OMSS to
reach the modulator, detrimentally effect the pulse bandwidth.

To
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Figure 1.1: Block diagram of the front-end to the OMEGA laser fusion sys-
tem. The oscillator generates a 200 ns Gaussian pulse, which is sliced to a
20 ns square pulse by a Pockel’s cell. The pulse-shaping system then creates
the desired optical pulse shape.

For microwave signal transmission, we found that such mechanisms
as photoconductive decay and depletion-region capacitance effect the mi-
crowave transmission and occur on time-scales comparable to the microwave
spectrum of the shaped electrical pulse. Since these effects are independent
of the microwave fields, linear models are appropriate; however the time-
and frequency-varying aspects result in inaccuracies with conventional lin-
ear analysis, which uses filter models. Therefore a more flexible characteri-

zation technique was developed, as described in this thesis.
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1.2 Primary Contributions

This research describes our development of a novel, more general method of
OMSS characterization, that incorporates (conventional) filter and modula-
tor characterization as special cases. This more general transfer function
characterization is accomplished by considering the OMSS as a linear de-
vice with both filtering and modulating properties. These two properties
are complementary in time and frequency, and an experimental technique
taking advantage of this viewpoint is applied to the measurement of the
transfer function. The characterization technique uses the fact that all real
devices can be modeled as separable modulators and filters, to apply an
appropriately-modified form of Fourier transform. However it does not rely
on windowing nor the experimental separation of time-varying modulation
effects and frequency-varying filter effects. The freedom from assumptions
regarding time and frequency invariance is balanced by the greater impor-
tance of careful system design and extensive data processing, however this
freedom allows transient device phenomena to be observed with unprece-
dented clarity. The expanded observation capabilities led to better model-
ing, and ultimately improved device performance.

The measurement system based on this development was demonstrated
by characterizing a variety of devices, such as conventional microwave time-
invariant filters, frequency-invariant optoelectronic modulators, and opto-
electronic microwave switches. The filter and modulator measurements
matched the results of conventional measurement techniques.

Based on the measurements, the performance of OMSS’s on OMEGA
were optimized by a series of fabrication improvements. The important

performance criteria were initial electrical pulse risetime, and subsequent
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microwave transfer function bandwidth. The optimization resulted in an

OMSS bandwidth comparable to the rest of the pulse shaping system.

1.8 Thesis Overview

To explain the operation of OMSS’s, Chapter 2 begins by providing back-
ground concerning the physics of the interaction of light and microwaves
through the intermediary of charge carriers in a semiconducting material.
The detailed material characterization of silicon samples, used for OMEGA
photoconductive switches, is presented in Appendix A. Then the applica-
tion of OMSS’s to the generation and gating of microwave signals is intro-
duced. In particular, we will discuss the operation of these switches in the
OMEGA laser pulse-shaping system. The fabrication steps for the switches
used in our work are explained as well. The details of the OMEGA laser
and other laser systems relevant to the work in this thesis are overviewed
in Appendix B.

Due to their non-standard device properties, OMSS’s are exceptionally
well-suited for use in LLE pulse-shaping. However, these same properties
also make it difficult to characterize the performance of the switches using
conventional microwave techniques. Chapter 3 develops the linear system
measurement theory necessary to comprehensively model the switch per-
formance. Conventional microwave device modeling and characterization is
presented in such a way as to naturally lead to the derivation of the exten-
sion of filter and modulator analysis to microwave switches.

From the developed theory, Chapter 4 describes a measurement tech-
nique capable of adequately characterizing the performance of switches

used on OMEGA and the corresponding experimental results (including the
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resulting performance improvements).
Finally, Chapter 5 summarizes the thesis by drawing conclusions from

the measurements and discussing future research directions.



Chapter 2

Optoelectronic Microwave Silicon Switch Physics

This chapter opens by covering the basic solid state physics concepts ger-
mane to an understanding of OMSS operation. Following this, we detail
" the operation of OMSS’s, emphasizing microstrip-based geometry, as im-
plemented on OMEGA. For our research, the most influential aspect of the
interaction of microwave fields with optically-created charge carrier plas-
mas turns out to be the temporal and spatial dynamics caused by sur-
face/interface (semiconductor-vacuum and metal-semiconductor) effects in
long-carrier-lifetime silicon. Our consideration of the temporal dynamics
will emphasize the picosecond and nanosecond time-scales, whereas spatial
dynamics are considered to the extent that they influence the microwave
lumped-element elements used to model the switch. We discuss the bene-
fits and limitations of applying lumped-element analysis in Sec. 2.6.

The general switch geometry we are considering is shown in Fig. 2.1.
Initially (before optical illumination of the switch) a bias electric field ex-
ists between one electrode and the other electrode and the ground plane.
The physical dimensions controlling the initial electric field distribution in-
clude the gap width (or length) [, switch width w, electrode-to-ground plane
distance h, and complex relative permittivity of the transmission-line sub-
strate €ZL, and OMSS ¢7¢ [6]. The photoconductive switch permittivity will
in general be a function of time and space, due to illumination, plasma

carrier dynamics, and energy-band effects such as doping, defect and de-
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pletion region/surface effects [7, 8]. Other important aspects of switch ge-
ometry that affect the creation and distribution of the charge carriers are
anti-reflective (AR) and high-reflective (HR) coatings. In addition carrier
distribution is affected by optical power Pp and wavelength A [9].

Light pulse
MPo

Figure 2.1: Schematic of surface-mount photoconductive microwave switch

on a microstrip transmission line.

For convenience we've collected in Table 2.1 some relevant properties of
nearly-intrinsic silicon at room temperature, under both unilluminated and

illuminated conditions.

2.1 Optical Surface Transmission

Before the photons can be absorbed in the semiconductor bulk, they must
pass through the interface. The optical intensity (photon) transmission
function at the interface between free-space and a dielectric is

4¢0-3
= —7T—— 2.1
(1 + €05)2° (2.1)

where ¢, is the real part of the relative permittivity of the substrate (which
can be effected by carrier density, as discussed below in Sec. 2.3). Without
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Table 2.1: Intrinsic single-crystal Silicon material parameters at 300 K

Parameter Symbol | Value Unit
Band Edge Wavelength Ag 1.09 wm
Excess Carrier Density Na 1.4 x 1010 | em™3
Ambivalent Mobility La 1800 em?/V -5
Ambivalent Mobility La 300 em?/17 - s
at n, = 10'® em ™

Recombination Lifetime Tr 100 1S

Auger Recombination Time TAuger 9 Us

at n, = 108 em™3

Optical Absorption Depth do 1 mm

at A =1.06 um

Free-carrier Absorption Depth | dy 1 mm

at n, = 108 em =3

Thermal Conductivity K 1.5 W/em - K
Specific Heat Cp 0.7 J/g-K
Resistivity 0; 23x10° | Q-cm
Breakdown Field E, 300 kV/em
Density ) 2.33 g/em?®
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thin-film coatings, the reflection loss of optical energy at the transition from
air to Si is initially [(e. — 1)/(e, + 1)]* = (2.4/4.4)%> = 0.30. By placing an AR
coating on the incident side and an HR coating on the opposite (metal con-
tact) side (see Fig. 2.1), the percentage of absorbed laser pulse energy can
be increased to nearly (1 — e~22%) of the incident energy, where « is the ab-
sorption depth and d is the thickness of the OMSS. The AR layer improves
the transmission for a given value of permittivity ¢., however since the per-
mittivity changes with carrier density the transmission across the interface
(and hence absorption in the bulk) decreases. This effect is one of the lim-
iting mechanisms to increasing carrier density. Others are mentioned in

Sec. 2.4.

2.2 Photon and Carrier Plasma Interaction

The operation of an OMSS relies on the modulation of the complex dielectric
constant of a semiconducting substrate by the optical generation of mobile
electron-hole pairs. At high enough carrier densities the interaction be-
tween the mobile carriers begins to take on the characteristics of a plasma.
This carrier plasma within the bulk of intrinsic or nearly-intrinsic Si (where
density of traps n; is much less than the density of carriers n.) consists of
an electrically-neutral (on the ensemble average) plasma of mobile electrons
and holes.

Once the photons reach the semiconductor, ignoring surface effects and
assuming a quantum efficiency 7 that is independent of carrier density (i.e.,
single-photon absorption), absorption of the photons by conversion to free

carriers (decrease in optical irradiance or instantaneous optical power I)
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will be proportional to the number of photons:

dl 1
— = =——, 2.2
dz o< —1 dopt ‘ ( )

where d,,; is the optical absorption depth. Solving for I,
I(z) = Ipe™/%, (2.3)

where I, is the optical power transmitted into the bulk at the surface.

The absorption depth is a function of frequency, so the absorption depth
profile can be tailored for best charge carrier/microwave electric field inter-
action. For OMSS geometries where the illumination and the penetrating
microwave field are on opposing surfaces, this is accomplished by choosing
a wavelength such that the absorption depth is comparable to the switch
thickness. This choice strikes a balance between maximum (shallow) ab-
sorption which would only occur at the surface and separates the carriers
from the field lines (at least initially, until diffusion has time to occur), and
deep absorption which would spread the generated carriers evenly through
the bulk, but would lower the total amount of created carriers, due to the
large transparency. Illumination from the microwave field side would al-
low maximum (shallow) absorption, but causes “current pinch” at the edges
of the contacts because the contacts are opaque to the illumination and
shadow the semiconductor bulk.

During and after illumination, when the population of free carriers in
the bulk Si substrate is large enough that the interaction between carriers
becomes significant, equations for plasma dynamics can be applied. An im-
portant parameter of this plasma is carrier density, which varies through-
out the bulk during illumination, and after illumination further evolves ac-

cording to Maxwell’s equations and the charge continuity/transport differ-






