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Abstract

This thesis describes the complete design, simulation, fabrication, and mea-
surement of high-temperature superconducting optoelectronic devices, intended
for conversion of subpicosecond optical pulses into a train of subterahertz band-
width single flux quantum (SFQ) voltage pulses.

Our experimental test structures were patterned in 100-nm-thick
YBa,;Cu3O7_; (YBCO) films grown by pulsed laser ablation on (100) MgO
bicrystal substrates. Each sample consisted of a coplanar strip transmission line,
a microbridge acting as the electrical pulse generator, and up to four Josephson
junctions, acting as the pulse shaping circuit.

Simulations of our device performance were carried out using numerical analy-
sis based on the resistively and capacitively shunted Josephson junction equivalent
circuit. The simulations showed strong dependence of the device response on the
input pulse parameters, junction dc bias, loop inductance, and the inductance
associated with the junction electrodes (leads).

To generate the device input, a train of 100-fs-wide optical pulses from a

Ti:sapphire laser photo-excited the superconducting YBCO microbridge and gen-
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erated 2-ps-wide electrical pulses. The pulses were then used to switch the junc-
tion. In addition to the input pulse, junctions were dc-biased at +0.7 [, -0.7 I,
+1.5 I, -1.5 I and zero—I.. The time-resolved dynamics of the junction response
was measured with the help of our cryogenic electro-optic sampling system, fea-
turing <200-fs time resolution and <150-uV voltage sensitivity.

In structures containing a single Josephson junction we obtained 0.65-ps-wide
SFQ pulses, generated due to the junction switching process. The response of
the multiple-junction devices was dominated by = 0.5-THz oscillatory transient,
which corresponded to the resonant frequency of the circuit formed by the double-
junction loop and the transmission line capacitance. Junction turn-on delay time
observed experimentally was significantly longer than that predicted by simula-
tions and the difference was attributed to the intrinsic limitations of the simulation
model.

In parallel with the device performance measurements, we have conducted a
comprehensive characterization of YBCO thin films and patterned devices using
X-ray analysis and dc electrical measurements in magnetic field. The surface
quality of our films and junctions was characterized by Atomic Force Microscope

imaging.
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Chapter 1

Introduction and Background

In Section 1.1, I summarize properties of classical and cuprate superconductors,
relevant to the thesis subject, while Section 1.2.1 is devoted to basic properties of
Josephson junctions and describes recent developments in junction-based super-

conducting electronics. Finally, in Section 1.3, I give the thesis overview.

1.1 Superconductivity

Superconductors are materials exhibiting zero dc resistivity and ideal diamag-
netism. A superconductor, however, maintains its superconducting properties
only below a certain critical temperature 7., dc-current density j. and magnetic
field H., specific for every material. Exceeding any of the critical parameters re-
sults in loss of superconducting properties. Up to the present day, superconductiv-
ity has been found in materials ranging from metals and alloys, through semicon-
ductors and organic materials, to esoteric materials such as heavy fermions and,

finally, cuprate oxides. It has been established that an attractive electron-electron



1.1. SUPERCONDUCTIVITY 2

(or hole-hole) interaction is responsible for occurrence of this extraordinary phe-

nomenon [1].

1.1.1 Classical Superconductors

The first superconductor was discovered by Heike Kamerlingh Onnes in Leiden,
Netherlands in 1911. This success was made possible by his earlier impressive
achievement - helium liquification in 1908. In his experiment, the resistivity of
mercury sharply decreased to zero after the metal was cooled to approximately
4 K. As the 20th century progressed, a more complete and exciting picture of
superconductors has been slowly emerging. The second fundamental property of
superconductors, ideal diamagnetism, was discovered in 1933 by W. Meissner and
R. Ochsenfeld [2]. In the 1957, the microscopic theory of superconductors was
developed by J. Bardeen, L. N. Cooper and J. R. Schrieffer (BSC theory) [1].
According to the BCS theory, essential physical characteristics exhibited by su-
perconductors are a consequence of an attractive electron-electron interaction,
mediated by virtual phonons. This interaction leads to the formation of pairs of
electrons with opposite wave vectors (E 3, —k 1), where up and down arrows stand
for spin orientation. Paired electrons form particles, so-called Cooper pairs (CP),

that having integer spin, follow Bose-Einstein statistics. Below 7, a CP ensemble
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is characterized by a macroscopic wave function
¥ =| ¥ | exp[if(7)], (1.1)

where | ¥ [2 = Zn, is the density of superconducting pairs (n; is the density of
electrons). The phase 6 relates the energy E and momentum p by £ = -hdf/dt and
p = hV4@ relationships. Infinite conductivity of superconductors is a macroscopic
consequence of the phase coherence of CP’s in the Bose-Einstein condensate.
Formation of the CP ensemble below T,, leads to the energy gap A(0) that
forms in the energy spectrum of carriers. The gap can be detected by far-infrared
radiation absorption measurement or by tunneling experiments [3], [4]. From

the BCS theory A(0) = 1.76 k1., where k; is Boltzman constant.

1.1.2 Cuprate Superconductors

The second half of the 80’s marks substantial resurgence of research in the field of
superconductivity, triggered by the discoverv of a new class of superconductors,
superconductive cuprates or so-called high temperature superconductors (HTS),
exhibiting critical temperatures 7.’s, well above the temperature of boiling liquid
nitrogen (77 K) - a convenient and inexpensive cooling medium.
Superconductivity in cuprates was first found in La-Ba-Cu-O compound in
1986 by J. G. Bednorz and K. A. Miiller [5]. Their discovery lead to the real

materials science break through - a discovery of Y-Ba-Cu-O compound with T,
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T. = 92 K. These discoveries brought into the scientific community a lot of ex-
citement, expectations and scientific activity. More than ten years later, cuprate
superconductors still present challenges to materials scientists and physicists who
try to fully understand the physical mechanism responsible for the HTS phe-
nomenon, as well as find commercial applications for these materials.

The HTS are complex oxides, consisting usually of four or more elements.
As in the case of all superconductors, cuprate superconductors demonstrate both
zero resistance and ideal diamagnetism below T, j., and H.. All currently known
HTS contain the CuO, component and exhibit 7.’s up to 160 K [6], [7]. As
mentioned above, LaSr; ;Cug304 with T, = 38 K was the first found cuprate
superconductor with 7T, more than 10 K higher than any superconductor know
before 1986, and YBayCu3O;_5 (YBCO) was the first material with 7, above 77 K
(T. = 92 K. YBCO is also currently the most intensively studied cuprate super—
conductor. In terms of practical use, YBCO-based microwave filters are currently
successfully competing on the wireless communication market. Another member
of the cuprate family is Bi;Sr,CasCuz Oy (BSCCO) with T, = 110 K. It has been,
with some success, used for power cable fabrication that could be applied in beam
steering magnets in high energy accelerators or in energy-storage systems. Efforts
to use both YBCO and BSCCO in digital circuitry and optoelectronics continue.
Tl3Ba;CayCuzOy and HgBayCayCuz Oy are currently materials with the highest

known T.’s (T, = 125 K and T, = 160 K, respectively), the latter reaching the
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Figure 1.1: Schematics of the crystal structure of YBa,Cu3zO7—_s5. Num-
bers mark the elementary-cell dimensions. Carrier transport occurs predom-
inantly along CuQ, planes.

above mentioned 7, under external pressure. Unfortunately, fabrication technol-
ogy for the highest T,.-materials is far from the maturity required for applications.

The structure of YBCO is shown in Fig. 1.1. It has a triple-perovskite unit
cell. If fully oxygenated, the YBCO unit cell dimensions are a = 0.384 nm,
b = 0.388 nm and ¢ = 1.17 nm. Basic properties of HTS were identified early
after their discovery [8]. Important feature of the YBCO lattice is that it is
anisotropic,i.e., Cu and O atoms form 2-dimensional (2-D) planes, separated by
Y atoms and sandwiched between two layers containing CuO chains. Due to
this anisotropy, magnetic penetration depth Ay, =~ 150 nm, )\, = 600 nm and

coherence length &, = 1.5 nm, & =~ 0.4 nm. As &, is less than spacing between
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Figure 1.2: Schematics of the phase diagram of HTS cuprates shows a variety
of material properties related to the oxygen doping. Understanding the Mott
insulator phase is believed to be crucial for understanding of HTS mechanism.

CuO; planes, conductivity ratio for the direction along and perpendicular to the
planes p,3/p. =~ 100 and charge transport happens predominantly along CuO,
planes. As A,;/&p = 100, YBCO is a II-type superconductor with the upper
critical field By & ®y/27&2, = 150 T for the field applied parallel to the ¢ axis
and B = ®¢/2w&E = 600 T for the field applied along ab plane. According
to the charge transfer model developed by Kudinov et al [9] superconducting
currents flow mainly within CuQO, planes and the CuO chains provide charge
carriers (holes) by trapping electrons, drawn from CuO, planes.

Though microscopic theory of superconductive cuprates has not been worked
out, yet, recent developments suggest that understanding of high temperature

superconductivity leads through understanding of non-superconducting phases,
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schematically shown in Fig. 1.2. Most interestingly, the Mott insulator region
in the phase diagram was found to exhibit a pseudogap due to very short-range
electron pair formation. Though, the long range ordering of electron pairs in
Mott insulator is prevented by thermal fluctuations, understanding of the process
leading to a pseudogap formation is expected to shed new light on the pairing
mechanism in HTS and may lead to the discovery of superconducting materials
with T.'s well above the current highest values [10], [11]. As seen from the phase
diagram, superconducting phase is in the vicinity of the metal-insulator (M-I)
transition and the reduction of the oxygen content pushes the material towards
the M-I region. The insulating region exhibits antiferomganetic properties which
extent well into the metallic region in form of the spin glass [12]. It is believed
that the magnetic origin of the parent (undoped) material properties may also
hold the clue to the pairing mechanism in HTS materials. While the BCS theory
established that the conventional pairing exhibits the s-wave symmetry, there is
strong experimental evidence [13] (and references therein), [14], [15] supported by
theory [16] that the nature of the orbital structure of pairs in HTS is characterized
by d2,,2 symmetry.

Because of the very short coherence length £, that is up to 4 orders of magni-
tude shorter than in LTS (e.g., £¥% = 38 nm, £4! = 1600 nm and £Y2¢% = 0.3 nm,
properties of HT'S materials are also very sensitive to structural inhomogeneities,

such as point defects, dislocations, vacancies, twins, and grain boundaries [17].
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Effort to understand physical properties of the structural inhomogeneities was
fueled by their crucial role in all HTS applications ranging from power lines to
devices used in electronics applications. Detailed TEM studies [18], revealed mi-
crofaceting of the 90° grain boundaries in YBCO thin films while the interface
properties of HTS’s with d,2,,2 pairing symmetry were reviewed in [19].

If barriers at HTS grain boundaries are thin enough, (approximately d < 2£)
the established weak link network may substantially reduce the maximal super-
conducting current carried by the sample due to magnetic-field-induced variations
in the weak link barrier. If the barriers are ”thick” (d > 2£) j. of HTS is also
reduced, because of decreased cross section of the superconductive path. To make
the situation even more interesting, absence of inhomogeneities in HTS may re-
sult in j. decrease, as well. The reason for this is the energy dissipation due
to the Lorenz-force-induced movement of magnetic flux inside HTS. As a conse-
quence, for some applications, j. must be increased by introducing point defects
into the sample (e.g., by ion bombardment). The point inhomogeneities then act
as pinning centers, trapping magnetic flux and preventing its movement across

the sample, effectively increasing sample’s j..

1.2 Josephson Junctions

In 1962, Brian D. Josephson suggested that CP’s could tunnel through the in-

sulating barrier of a superconductor - insulator - superconductor junction (S-I-S
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Josephson junction) [20]. The quantum character of the tunneling effect, plus the
phase coherence of the CP’s lead to the range of unique properties of Josephson
junctions (JJ’s) both from point of view of the physics and electronic applica-
tions. JJ properties important for applications in ultrafast electronic circuits will

be described in more detail in Chap. 2.

1.2.1 Josephson Coupling

Generally, two separate ensembles of CP’s in two bulk superconductors are de-
scribed by two independent wave functions ¥, and ¥, with two distinct phases
0 and 6,. Bringing two superconductors close together (e.g., by depositing a
few-nanometer thin insulating layer between two superconducting layers) results
in CP tunneling across the insulator.

Josephson in his theoretical paper predicted that below a certain critical cur-
rent I, there is no voltage drop across the junction and the current is a har-
monic function of the wave-function phase difference (dc Josephson effect). Above
I., however, the voltage drop develops across the barrier and the current oscil-
lates with a frequency directly proportional to the voltage (ac Josephson effect).
Eq. (1.2) and (1.3), shown below, are mathematical representations of the dc and

ac Josephson effects, respectively:

I= Icsin(ﬁz ot 01) = Ic sm(qS) (1.2)
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and

d¢p 2eV 2w
PR R N (1-3)

where I is the current through the junction, ¢ = 6, —6,, V is the voltage across
the junction and ¥y = h/2e = 2.07x107° Wb = 2.07 mV-ps is the value of the
SFQ. From Egs. (1.2) and (1.3), for a constant voltage applied across the junction,

we get

I = I sin(w;t + @const), (1.4)

where Josephson angular frequency w; is defined as
2e
Wy = (g)v (1.5)

Eqgs. (1.4) and (1.5) show that JJ works as a voltage-tunable oscillator with the
conversion factor 2e/h = 483.6 GHz/mV.

If placed in an external magnetic field aligned along JJ superconducting elec-
trodes, junction’s I, follows the modulation pattern

sin7T® /Py

L(®) =1 | 7® /%,

[, (1.6)

due to the field-generated phase variation inside the JJ barrier [21], [3]. Joseph-
son’s theoretical predictions were promptly (in 1963) confirmed experimentally by

observation of the zero-voltage current in a current-voltage I — V characteristics
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of Pb- and Sn-based tunnel junctions by P. W. Anderson and J. M. Rowell [22].
Suppression of I. by external magnetic field was reported in the same paper. Ob-
servation of constant-voltage steps on the junction I — V curve, measured in the
presence of the microwave electric field confirmed the existence of the ac Josephson
effect [23]. For his theoretical predictions of the coherent phenomena associated
with the CP tunneling, Josephson shared the 1973 Nobel Prize for physics with
L. Esaki and I. Giaver.

As mentioned in the previous Section, superconducting coupling across 2-D
inhomogeneities in HTS is weaker than in a bulk and substantially limits current-
carrying capabilities of HTS even along CuQO, planes. However, such weak connec-
tion, if localized and well defined, may show Josephson coupling and exhibit the
above mentioned exceptional physical properties of JJ’s. A variety of techniques
for HTS junction fabrication have been developed (for review see, e.g., [24]). Due
to material complexity, however, JJ fabrication still lags behind more developed
LTS technology. Out of the variety of HTS JJ fabrication techniques, bicrystal
and step-edge junctions (see Fig. 1.3) are the easiest to fabricate. Both approaches
use a thin-film deposition on a substrate that incorporates precisely en gineered
imperfection - a grain boundary in the former and a step (approximately- 100-nm
high) in the latter case. Recently, ramp junctions showed a lot of promise due to
their relatively low spread of parameters and their ability to incorporate ground

plane that serves for inductance reduction.
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Figure 1.3: Classical tunnel .J.J's consist of two superconducting electrodes
separated by a thin (2-3 nm) insulating layer (a). Bicrystal HTS JJ's are
formed at the artificially engineered grain boundary in the substrate (b).
Films grown on a milled substrate step form usually two junctions - one at
the upper and one at the lower surface discontinuity (c).
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1.2.2 Josephson Junction as a Switching Element

The bi-stable behavior of the I — V characteristics JJ’s [see Fig. 2.5] prompted
an idea to implement the junction as a digital gate element. In one of the first
time-domain measurements, Matisoo [25] placed the upper limit for the junction
switching transient time, 7, below 0.8 ns. Subsequent experiments confirmed du-
ration of 7 in the picosecond range [26], [27]. Intrinsic switching time of a JJ was
calculated from the microscopic theory [28], assuming zero-capacitance junction
and an idealized delta-function bias pulse. The calculations yielded 7; = A/2A,
setting the intrinsic limit for Nb-based JJ technology to 0.22 ps. Assuming a
BCS-like gap in HTS, 7; for these materials should reach the 10-fs range.

The classical tunnel junctions with capacitance C7Y greater than approxi-
mately 100 fF' (underdamped ju--tions) are building blocks of the so-called latch-
ing superconducting digital logic that uses bi-stable JJ’s in a similar manner as
transistors are used in semiconductor-based electronics. To make use of the fast
switching, JJ’s are dc biased just below their I. and an additional input signal
is provided via control lines. These control pulses switch the junction from the
zero-voltage (logic state ”0”) into the non-zero-voltage state (logic state ”1”). Be-
cause the transition time from ”0” to ”1” is in the picosecond range, the very fast
operation of such electronic gates is expected. Various technical difficulties, how-
ever, have hampered the development of the superconducting digital gates based

on the latching logic. The first problem is the JJ I — V curve hysteresis, due to
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which the junction remains latched in voltage state after the switching input, as
long as the bias current is non-zero. Thus, the latching JJ gates require an ac
clocking scheme in order to reset each gate before the next clock cycle arrives.
The second major difficulty is, that the hysteretic junctions often fail to return to
the zero-voltage state, even when the bias current is reduced to zero. This latter
effect is called the ” punchthrough” effect [21], [29], [30] and results in dynamical
switching of the junction bias point into negative part of the I — V curve. The ac
clocking systems, which would allow the fast reset and simultaneously avoid the
punchthrough effect limited the highest attainable clock speed of the latching logic
to approximately 1 GHz, severely restricting the attractiveness of this technology
as the major alternative to semiconductor digital logic. The latching logic was,
however, the foundation of the Josephson computer project undertaken by IBM
in 70’s [31], as well as the Japanese Josephson computer research [32]. Both
projects were dropped in the 80’s.

A conceptually different approach to superconducting electronics is based on
the ability of junctions with the capacitance C/Y below ~ 100 fF (overdamped

JJ’s) to generate a train of SFQ pulses [33], [34] with the quantized area:
h - -
/ V(t)dt = Bo = 5 ~ 2.07mV —ps. (1.7)

Single-SFQ gates consist of externally-shunted tunnel JJ’s. A junction is biased

slightly below its I.’s and a short control pulse, usually another SFQ pulse, drives






