Mission Statement

The Laboratory for Laser Energetics (LLE) of the University of Rochester is a unique national resource for research and education in science and technology. The Rochester area has a history of innovation, providing a unique setting for LLE within a technologically sophisticated community. Established in 1970 as a center for the investigation of the interaction of intense radiation with matter, the Laboratory has a five-fold mission:

1. to conduct implosion experiments and basic physics experiments in support of the National Inertial Confinement Fusion (ICF) Program;
2. to develop new laser and materials technologies;
3. to provide graduate and undergraduate education in electro-optics, high-power lasers, high-energy-density physics, plasma physics, and nuclear fusion technology;
4. to operate the National Laser Users' Facility (NLUF); and
5. to conduct research and development in advanced technology related to high-energy-density phenomena.

The 2017 LLE Calendar contains information about many of the Laboratory's programs. We hope that you enjoy using your copy of the LLE Calendar and wish you a productive and fulfilling 2017.

LLE is funded by the National Nuclear Security Administration (NNSA) to support its Stockpile Stewardship Missions.
Welcome to 2017

LLE Vision

LLE envisions a secure, environmentally neutral, and inexhaustible energy source for mankind. This future energy source—fusion—is the basis of the sun’s energy and is carbon and radioactive-waste free.

2017 will be a year of challenges and opportunities

• Ongoing pursuit of ignition and the development of ignition alternatives
• Polar-direct-drive implosions at the National Ignition Facility
• Omega will remain the premier high-energy-density user facility
• Education and training of students (high school through Ph.D.) is a high priority

Prof. Robert L. McCrory
University Professor
Vice President, Vice Provost, University of Rochester
Director, Laboratory for Laser Energetics
The LPSE code system was developed to study laser–plasma interaction physics problems. The figure above is from a 2-D LPSE calculation highlighting the range of scales involved in cross-beam energy transfer. Two speckled laser beams enter from the left and upper boundaries, propagating inward. The speckles diminish in intensity (see color code) over several tens of microns as a result of absorption and beam bending caused by refraction. The red dot shows the location of the critical-density region.

The dates of the various phases of the moon and the equinox and solstice dates are from the U.S. Naval Observatory data tables and are based on Universal Time (UT); see: http://aa.usno.navy.mil/data/docs/MoonPhase.php and http://aa.usno.navy.mil/data/docs/EarthSeasons.php, respectively.
Funded by Washington State University, LLE constructed the Dynamic Compression Sector (DCS) laser, which is now installed at the Advanced Photon Source in Argonne National Laboratory. The DCS laser is a 100-J tool for shock-physics experiments to be carried out at a first-of-a-kind user facility dedicated to dynamic compression science.
Experiments conducted by a collaborative team from the University of California–Berkeley, LLNL, LLE, and CEA provide evidence that H and He demixes at the high pressures expected to exist deep inside Saturn and Jupiter. The demixing may create a type of “He rain” that may explain the planets’ higher-than-expected luminosity. Two of the co-authors are Marius Millot (LLNL) and Stephanie Brygoo (CEA).
The Eighth Omega Laser Facility Users Group Workshop, held 27–29 April 2016, attracted 112 researchers from around the world. Most of the 76 contributed posters were given by students and postdocs in attendance. The next workshop will be held 26–28 April 2017.
Brilliant colors illustrate the complex interaction between the diffractive and refractive axicons that constitute a Graxicon, an optic developed by the Optics and Imaging Sciences group. The Graxicon can be designed to provide rapid focal-spot zooming to increase laser coupling to fusion targets or to provide a rapidly changing ring beam for a variety of laser applications.
Optical Manufacturing Process Engineer, John Spaulding, and Coating Operator, Justin Foster, are shown installing an optic on a new prototype stage built to support research and development work on glancing angle deposition (GLAD) coatings. The deposition system is designed to allow for growth of an oriented, birefringent film structure in stripes across an optical surface, and the resulting film thickness is controlled such that each stripe region is a quarter-wave plate.
Thirteen students from Rochester area high schools participated in the 2016 LLE Summer High School Research Program. Since its inception in 1989, 353 high school students have participated in this program. The program is led by Dr. Stephen Craxton, shown above with the students. Insets show some of the research activity engaged by the students.
3.7 mm
0.3 ns
0.3 ns
0.9 ns
Jet
D_x
D_z
Jet
0.3 ns
0.9 ns
Δz
Δx
Jet
Dr. Michael Rosenberg, a new Research Associate at LLE, was selected to receive the prestigious Marshall Rosenbluth Award for Outstanding Doctoral Thesis given by the American Physical Society Division of Plasma Physics. The inset shows some of the work in Rosenberg’s thesis, demonstrating magnetic-field reconnection in colliding laser-produced plasmas.

![Diagram of experimental setup]

LLE Golf Tournament

at Deerfield

AUGUST 2017

University of Rochester • Laboratory for Laser Energetics

www.lle.rochester.edu
Research Associate, Dr. Steven Ivancic, is shown at the target chamber securing the extreme-ultraviolet (EUV) spectrometer to the Multi-Terawatt (MTW) laser target chamber. Its nose cone can be seen inside the target chamber. The EUV spectrometer measures emission from targets rapidly heated by the subpicosecond MTW pulse. This is part of the activation of the EUV spectrometer project and the second-harmonic–generation project on the MTW.
LLE Scientist, Dr. Semyon Papernov, is shown here with four of his eight students during a teaching session on atomic force microscopy (AFM). The AFM instruction is part of OPT 254, a required undergraduate laboratory course offered through the Institute of Optics.

Studying Nanometrology

<table>
<thead>
<tr>
<th>SUNDAY</th>
<th>MONDAY</th>
<th>TUESDAY</th>
<th>WEDNESDAY</th>
<th>THURSDAY</th>
<th>FRIDAY</th>
<th>SATURDAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEPTEMBER

<table>
<thead>
<tr>
<th>S</th>
<th>M</th>
<th>T</th>
<th>W</th>
<th>T</th>
<th>F</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOVEMBER

<table>
<thead>
<tr>
<th>S</th>
<th>M</th>
<th>T</th>
<th>W</th>
<th>T</th>
<th>F</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LLE redesigned and built a rotating cart (RCART) shown above to be used at the National Ignition Facility (NIF). Many NIF diagnostics must be oriented either vertically or horizontally and RCART facilitates the transition without removing the cart from the diagnostics instrument manipulator—shown in schematic form in the inset.
Radiograph of a cryogenic implosion recorded with the aberration-corrected narrowband crystal imager on a 40-ps exposure time framing camera at a convergence ratio CR = 7. The Si backlighter target was driven by a 20-ps, 1.5-kJ pulse from OMEGA EP. The image is rendered on a linear intensity scale.