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Chapter 2
Target Fabrication

2.1 INTRODUCTION

The majority of targets that are shot on OMEGA are fabricated and assembled at LLE. Capsules
and some components for targets are provided by other organizations as part of the overall National
Inertial Confinement Fusion Program. The LLE Target Fabrication Facility is used to fabricate, assemble,
and characterize a wide assortment of targets for varying experimental campaigns. Physical and analytical
methods for their preparation, inspection, and mounting have been developed.

The ICF experiments involve variations of spherical targets and planar targets. The range of
target types used on OMEGA includes

• Spherical implosion targets consisting of glass or polymer shells filled with a mixture of gases;

• Surrogate targets (equivalent-sized solid spheres) used for beam pointing and focusing using the
continuous UV alignment laser;

• Gold-coated spheres that are shot to provide x-ray images used to verify beam pointing and focusing;

• Planar targets used for hydrodynamic stability, equation-of-state, and plasma physics research; and

• “Hohlraum” targets for indirect-drive experiments.

LLE targets are grouped into two main classes: spherical and planar (see Fig. 2.1-1). These two
categories are subdivided into room-temperature or cryo targets. A spherical cryogenic target is filled
with DD or DT at pressures over 1000 atm, then cooled to 18.7°K, and layered by a differential heating
method.

G6080

Stalk
mounted

Silk
(cryogenic mount) Planar cryo Multiple foil

1 mm 2 mm

Spherical Planar

Figure 2.1-1
From left to right: Stalk-mounted
coated target, silk-mounted cyrogenc
target, planar-cryo target, multiple-
foil target.
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2.1.1 Glass and Polymer

Current spherical implosion targets, such as those shown in Fig. 2.1-2, consist of thin-walled
glass or plastic shells filled with a DT or DD gas mixture that may contain trace amounts of a diagnostic
gas. Depending on the type of experiment, these targets are coated with various metals, inorganic (salt),
and polymeric materials (see Fig. 2.1-2). Target-quality glass and plastic shells are fabricated by General
Atomics, the DOE-designated target contractor and supplier for the ICF fusion community. The desired
gas mixture is permeated into the shell at room temperature if the shell material is plastic or at ~300°C
if the material is glass. The required soak times are determined from the measured permeation time
constant for each gas and the shell-wall properties.

Spherical polymer capsules are typically ~870 µm in diameter and with wall thicknesses varying
from 2 to 30 µm, depending upon the goal of the experiment. While polymer shells are desirable for
their low density, mass, and atomic weight, they are more complex and expensive to produce than glass
shells. The best surface smoothness is ~60-nm rms roughness for 2 ≤ l ≤ 100, although typical smoothness
values are ~40 to 200 nm.

Plastic targets are available with a discrete layer of plastic doped with a mid- to high-atomic-
weight element at a well-defined location in the shell wall. Elements such as silicon, germanium,
chlorine, and titanium are available at concentrations of 6%, 2%, 3%, and 5%, respectively. The actual
concentration is known to ±20% of the requested dopant level.

A variation of the partially doped target is the “surrogate” cryogenic target. Here, the hydrogen
in the plastic is replaced with either deuterium or a combination of deuterium and tritium. Fully deuterated
plastic shells are available. Mid-z “spectroscopic marker” atoms may be present at discrete regions of
the capsule wall.

T1376a
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 shell wall
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D2/Ar
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15 mm

Figure 2.1-2
Typical spherical target dimensions with example
of layer types.
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The polymer shells are filled with D2 or DT to pressures of 2 to 40 atm. Trace concentrations of
inert gases, i.e., Ne, Ar, Kr, and Xe, can be added to the D2 (only) gas. All non-cryogenic shells are
coated with 500 Å to 700 Å of Al on the outside of the shell as a shinethrough and permeation barrier.

2.1.2 Foam Targets

A new type of plastic shell under development is the foam shell (Fig. 2.1-3). The shell wall is
50 to 100 µm thick and consists of a resorcinol-formaldehyde (RF) open-cell foam with a density of 80
to 180 mg/cm3. A 2- to 4-µm GDP overcoat is vapor deposited over the foam to seal the shell. These
targets are filled with D2 for ICF experiments.

The first OMEGA cyrogenic wetted-foam target implosion produced the highest neutron yield
to date.

I1404

Figure 2.1-3
R/F foam targets in liquid.

2.1.3 Coatings

The application of coatings to targets is a necessary step in the fabrication of many of the
multilayered shells required by different experiments. Several processing systems are available:
Deposition methods such as thermal evaporation and sputtering (physical vapor deposition) are used to
provide metallic coatings. Plastic coatings (e.g., CH) are applied by the vapor phase deposition of
oligomers that polymerize on the surface. A parylene generator is available for plastic deposition. Salt
coatings, such as KBr, KCl, NaF, and NaCl, are deposited using evaporation techniques.

Uncoated glass shells are essentially impermeable to hydrogen at room temperature. Bare plastic
shells, on the other hand, are highly permeable and must be coated with a thin layer of aluminum prior
to filling. The aluminum layer extends the permeation time constant from about 2 min to 6 to 10 h. This
allows the desired gas mixture to be established and maintained through subsequent processing. After
the initial coating step, the gas mixture is permeated into the shell over a 24- to 48-h period. When
permeation is complete, it may be necessary to add an additional 900-Å layer of aluminum. This final
layer seals the target and acts as a shinethrough barrier. This technique has been used to fill polymer
shells with D2, DT, and mixtures of up to three gases: Ne, Ar, Kr, and Xe, each of which has a different
permeation rate. To ensure that the target contains the required, known amount of gas, the completed
targets are delivered to OMEGA in individual pressurized capsules and are depressurized just prior to
being inserted into the target chamber.
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2.1.4 Surface Finish

The smoothness of the outer and inner capsule surfaces is important. The shells must be spherical
(to within <0.5% of the radius) and the walls concentric. The rms surface roughness, calculated from
the power spectrum of the modes, is desired to be less than 80 nm for modes l = 2–100. Both GA and
LLE use a modified atomic force microscope (AFM) to profile surface roughness along discrete great
circles around a target. (The target is mounted on an air bearing and rotated beneath the AFM sensing
head. The circularity and alignment of the target are sufficient to ensure that the target surface remains
within the dynamic range of the AFM.)

2.1.5 Low-Mass Target Mounts

The technique used to support the target is important for the following reasons: (1) the mass in
contact with the target must be kept to a minimum to avoid perturbing the physics of the experiment;
(2) the total amount of material in the mount must be minimized to limit damage to optics and diagnostics
inside the target chamber due to material ablated from the mount; (3) the mount must not occlude any
of the 60 beams; and (4) target vibration must be kept below the level required by the experiment. In
addition, the mounts for cryogenic targets must be stable and durable at cryogenic temperatures
(16.8 K).

Some typical current target mounts are shown in Fig. 2.1-4. For routine target-mounting
requirements, a 15-mm-long, 17-µm-diam SiC fiber is attached to the target. This, in turn, is attached to
a 1-cm-long, 70-µm-diam SiC fiber and then to a 7-mm, 140-µm boron fiber. Finally, a boron-fiber

T1380
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(a)
Surrogate glass target

 for laser-beam alignment

(b)
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 with SiO2 mandrel

(c)
X-ray pointing

target

Figure 2.1-4
(a) Glass target for laser-beam alignment; (b) dumbbell
surrogate target; (c) x-ray pointing target.
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tripod supports the carbon fiber. This mount assembly has caused no ablation damage and has a resonant
frequency >200 Hz, which is high enough for this application. (The resonant frequency is routinely
measured prior to delivering targets.)

The “C-mount” design has been developed to support cryogenic targets. Here the target is
suspended by spider’s silk between the open ends of a C-shaped mount fabricated from beryllium. For
alignment reasons, the target must be positioned within 50 µm of a centroid position defined by the
C mount and the cryogenic equipment.

2.2 CAPSULES FOR CRYOGENIC TARGETS

OMEGA cryogenic capsules make use of a thin (a few microns thick) glow discharge plasma
(GDP) or polyimide shell that contains the fusion fuel. A typical target design for the OMEGA
laser system consists of a spherical shell, 0.9 mm in diameter and 1 to 5 µm in wall thickness (see
Fig. 2.2-1), with a 100-µm-thick layer of solid deuterium and tritium (DT) uniformly deposited on the
inner surface.

Figure 2.2-2 shows, from left to right, (a) an “unlayered” plastic target containing frozen
deuterium and (b) a partially layered target. Note the crystalline faceting between the ice crystals. The
bright ring is the inner surface of the ice shell. Image (c) shows a well-layered target. The hallmark of

S258

Figure 2.2-1
GDP target.

G6069

(a) (b) (c)

Figure 2.2-2
Layering of a cryogenic target.
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a well-layered target is the uniform radius of the bright band and the absence of crystal bounding
facets. On each image the faint black lines are spider webs. These webs are used to attach the target to
the C-shaped holder or mount.

2.2.1 Polyimide and Glow Discharge Polymer (GDP) Fabrication

Polyimide is an optimum material for ICF targets because it has high tensile strength, high
Young’s modulus, and great resistance to radiation. This increases the survivability rate for thin-walled
shells. The standard shell material at LLE is GDP because it has lower density and better (smoother)
surface roughness, and the production process is more developed.

Polyimide and GDP shells can be consistently fabricated with dimensions (see Figs. 2.2-3 and
2.2-4) required for ICF targets. The properties and quality of shells can be modified and improved via
processing parameters. The modifications in the shell properties are attributed to changes in crystallinity
and the degree of cross-linking.

Spherical polyimide shells are fabricated using a vapor-deposition polymerization (VDP) method.
In this work, a parametric study was performed to optimize the fabrication process and quantify the
associated properties relevant to cryogenic targets.

The polymide fabrication deposition process involves two steps. PMDA and ODA are vapor
deposited to form poly (amicacid) (PAA) on either PAMS mandrels or flat substrates. The PAA layer is
then converted into polyimide by thermal imidization. In this process, the PAMS mandrel is
depolymerized and permeated out of the nascent polyimide layer, resulting in freestanding shells.
Figure 2.2-5 shows the process, and Fig. 2.2-6 shows the chemical synthesis.

Figure 2.2-3
Cross section through the polymide capsule
showing the wall.

T1436a
1.5 mm

Figure 2.2-4
Polymide capsule.

T1436b
910 mm
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Figure 2.2-5
Polymide fabrication deposition process.
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Figure 2.2-6
Polymide chemical synthesis.

The glow discharge polymer (GDP) process is simpler. Two source gases—C3H6 (or acetylene)
and hydrogen—pass into a glow discharge, which causes the carbon-based gas to polymerize on the
mandrel.

The depolymerizable mandrel technique was recently developed by GA and LLNL to fabricate
plastic ICF targets. The mandrels were either solid beads or hollow shells made from poly
(a-methylstyrene) (PAMS) that were overcoated with GDP using the traditional low-pressure glow
discharge polymerization process.

Heating the overcoated mandrel to 300°C decomposes the mandrel into its individual monomer
units that permeate through the shell wall.

Currently, the PAMS mandrels are thin-walled (<10-µm) shells (0.85- to 0.95-mm diam)
fabricated by the microencapsulation method. This method was initially developed to make polystyrene
shells for ICF experiments but is better suited for making mandrels. This process meets the critical
requirement of the mandrel, which is a smooth, spherical surface.
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2.2.1.1 Target Burst and Buckle Parameters
The elastic modulus and tensile strength of both polyimide and GDP shells must be known to

define the conditions required to prepare DT-filled cryogenic targets: (1) the greater the elastic modulus,
the greater the buckling pressure the target can withstand, and (2) the greater the tensile strength, the
greater the burst pressure the target can endure. These values and the permeability of the material
determine the maximum rate at which the target can be pressurized and cooled for ICF cryogenic
experiments.

LLE’s burst and buckle test equipment consists of a pressure cell with opposing windows, a
microscope, a CCD camera, and a pressure transducer with an accuracy of ±1 psi. The shells are viewed
through a microscope with transmitted light. The shell’s image, the gas pressure in the cell, and the
elapsed time are all recorded on videotape.

To burst (or buckle) a shell, the pressure in the chamber is lowered (or raised) at a faster
rate than the rate that the internal shell pressure changed due to permeation through the shell wall
(Fig. 2.2-7 shows a target that has buckled under 5 atm of overpressure). Typical pressure-rate changes
ranged from 0.01 atm/s to 3.5 atm/s for buckle tests and up to 50 atm/s for burst tests. After the shell
fails, the videotape is reviewed frame-by-frame to determine the exact rupture pressure. If the permeation
time constant of the shell is known, the pressure difference across the shell wall at the point of failure
can be accurately calculated, and the strength measurement is corrected for this change. The sequence
of images shown in Fig. 2.2-8 shows a burst test of a target; the capsule is seen to swell prior to
bursting.

2.2.1.2 Permeability
The rate at which hydrogen isotopes permeate through the plastic material is a major factor that

will determine the viability of vapor-deposited capsules as target-shell material. A high room-temperature
permeation rate will allow targets to be rapidly filled to the designated pressure (maximum is
1500 atm) for cryogenic ICF experiments. A slow room-temperature permeation rate will require that
the targets be filled at elevated temperatures (200°C max); otherwise the material cannot be used. It is
necessary that the material be impermeable below 26 K and desirable, although unlikely, that the material
be permeable above ~50 K. This latter capability will prevent a pressure differential from developing
across the shell wall during the cooling cycle (due to temperature gradients in the permeation vessel).

T1362

845 mm

Figure 2.2-7
Target buckled due to external overpressure of 5 atm.
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The permeability of a shell is measured by permeating gas into the shell and then transferring it
into a (pre-baked) chamber of known volume (2.4 cm3). The pressure rise in the chamber is monitored
as a function of time, and the data are fitted with the expected exponential function. A correction term
is added to this function to account for outgassing from the chamber walls (~4 × 10−11 Torr•l/cm2 •s).
The equation gives the shell’s permeation time constant (for the specific gas) and the total quantity of
gas in the shell at the time the pressure measurement begins.

To determine the effect of temperature on the permeability of the shell material, the technique is
modified as illustrated in Fig. 2.2-9. Half-shells are mounted on a metal plate and placed into a chamber
of known volume. One side of the plate is pressurized via a gas tank; the other side of the plate has a
pressure transducer and He leak detector. The permeability rate is measured as the temperature is
varied from 140 K to 473 K.

The technique allows permeation time constants as short as 1 min and as long as 50 h to be
measured with accuracy greater than 95%. The permeation time constant t is determined from the plot
of pressure rise versus time.

The material permeability coefficient Kp is determined using the permeation time constant of a
thin spherical container, t K ARgT wVp− = ( )1 ,  where A is the shell’s mean surface area, R g is the
ideal gas constant, T is the absolute temperature, w is the shell’s wall thickness, and V is the shell
volume. For a thin-walled spherical shell this simplifies to K wr RT p g = 3t, where r is the average shell
radius.

T1453

t = 0

∆P = 0
Kp = 6.8 × 10–16

mol.m/m2.s.Pa
(t = 7.8 min)

t + 4.3 s

∆P = 39 atm

t + 19 s

Kp > 1 × 10–14

mol.m/m2.s.Pa
(t < 20 s)

963.2 mm 1146.7 mm 1054.7 mm

Figure 2.2-8
A 39-atm pressure differential across a polyimide capsule (with a 5-µm wall) increases the capsule diameter by 19%, the
surface area by 42%, and the permeability by more than 100%.
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2.3 TARGET MOUNTING

A rugged low-mass mount, shown in Fig. 2.3-1, has been developed that satisfies the numerous
requirements. Spider-silk fibers as thin as 0.25 µm are readily available in essentially any length. Four
fibers are stretched across the arms of a convoluted beryllium wire (250-µm diam), and the capsule is
inserted between them in a precise and repeatable location. The capsule is glued to the fibers.

The Be frame is attached to a boron fiber, which in turn is attached to an Al base [see
Fig. 2.3-2(a)]. This mounting method is highly robust at cryogenic temperatures. The wire frame is
convoluted so that it is compatible with the present OMEGA 60-beam configuration, causing minimal
disruption to the beam path. In addition, the support structure must not occlude the diagnostic ports. A
modified frame without the convolutions (needed to avoid blocking the beams) is also used.

The four targets are placed in a contoured copper holder, as shown in Fig. 2.3-2(b). The copper
holder acts to improve the temperature uniformity inside the permeation cell and also provides a space
filler to minimize the volume [see Fig. 2.3-2(b)]. Four targets are filled simultaneously.

The specifications for the mounting structure are the following:

• Cannot occlude laser beams
• Cannot occlude diagnostic ports
• Rigid support of the capsule
• Resonant vibration frequency about the target positioning system
• Must achieve stiffness with fibers longer than 3 mm
• Must consist of materials of low atomic numbers that can survive the cryogenic temperatures

without distortion
• Must not absorb a significant amount of DT during permeation

T1667

Flat film

Half-shells
mounted

on metal plate
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Gas
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Heater and
controller

Helium leak
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Pressure
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140 to 343 K
helium

295 to 473 K
all gasses

Figure 2.2-9
Experiment that measures temperature dependency of
the plastic permeation from 140 K to 473 K.
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T1639

Figure 2.3-1
Spherical target mounted on a convoluted Be frame
with four spider silks.

T1469

1 cm

Polymer shell

Spider silk
(0.1 mm)

Be frame

B fiber

(a) (b)

Figure 2.3-2
(a) A silk-mounted polymer shell on a Be frame, which
is attached to a boron fiber; (b) the target rack showing
a mounted target inserted in one of four slots.
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2.3.1 Spider Silk

Spider silk has proven to be the optimum material for mounting targets in the beryllium frame
(see Fig. 2.3-3).

2.3.2 Spider-Silk Tensile Strength

One strand of spider silk will support a 16-mg target, which is 300 times the mass of cryo
targets.

The spider silk has desirable tensil strength properties as can be seen in Fig. 2.3-4. The average
ultimate tensile strength for silk is 1.2 GPa (see Fig. 2.3-5). A 50-µg cryogenic (filled) target exerts a
load of 0.2 MPa, which is negligible compared to the tensile strength of the silk. To minimize vibration,
the silk is preloaded to about 800 MPa (16% strain). The stress–strain behavior of the spider silk (see
Fig. 2.3-5) is typical of the silk from spiders obtained locally.

T1507

834.1 nm

423.5 nm

500 nm 500 nm

Before loading After loading

Figure 2.3-4
SEM images of spider silk
before and after loading.

G6070

Figure 2.3-3
Spider and silk-mounted target.
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2.3.3 Mechanical Properties of Silk

The characterization of spider silk produces the following average values with a 95% confidence
level:

• Elastic modulus 2.2±0.7 GPa
• Ultimate tensile strength 1.2±0.2 GPa
• Elongation 25%
• Energy to break 1.4±0.3 × 105 J/kg

2.4 PLANAR CRYOGENIC TARGETS

A representative planar-target cell structure used for equation-of-state experiments is shown in
Fig. 2.4-1. The fill gas condenses and freezes in the cell. Windows and internal components can be
changed to suit the experimental requirements. Beryllium windows can be provided for transverse
x-ray imaging.
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G6071

Figure 2.3-5
Typical stress–strain data. The maximum strain is
20%. Notice that after the silk ruptures, the data
plateau at 600 MPa. This indicates that two parallel
silk strands were loaded.
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Figure 2.4-1
Cryogenic-planar-
target cell structure
used for equation-of-
state experiments.
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Each target cell is composed of numerous small components that must be meticulously cleaned,
assembled, and thoroughly tested (see Figs. 2.4-2, 2.4-3, 2.4-4, and 2.4-5).

The MC is inserted into the OMEGA chamber from the bottom. Approximately 1.5 s prior to a
shot, the shroud is rapidly removed from the MC to expose the target. Figure 2.4-6 shows a planar
target shot. The target cell is destroyed during the shot (see Fig. 2.4-7). The target holder and reservoir
can be recovered and reused. The active shock breakout (ASBO) diagnostic (ten o’clock) is used to
measure the velocity of laser-induced shock waves that propagate through the target cell.

G6073

X-ray
viewing

axis Fill tube

Wire
retainers Retaining ring

Figure 2.4-3
A close-up view of the target assembly. The target cell is clamped between a pair of retaining rings that prevent hardware
from being ejected into the OMEGA chamber. Slots machined at one and seven o’clock are for the fill and vent tubes.
Slots machined at four and ten o’clock are provided for transverse x-ray imaging.

G6072

Figure 2.4-2
Planar targets are carefully assembled by hand.
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Figure 2.4-4
A planar cryogenic target assembly ready for filling. The coiled copper reservoir
(1) is filled with room-temperature gas (e.g., D2) before attaching the target
assembly to the cold head. The target holder (3) is secured to the cold head
with the split nut (2), providing conductive thermal coupling.

G6075

Figure 2.4-5
Fully assembled cryogenic planar target.
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G5570

Figure 2.4-6
A photograph of a cryogenic planar shot
inside the OMEGA chamber.

G6076

Figure 2.4-7
The target shot destroys the target cell.



REVISION B (APRIL 2004)—PAGE 17CHAPTER 2:  TARGET FABRICATION

2.5 QUALITY ASSURANCE

The Powell scope metrology station is the primary diagnostic used to measure the dimensional
accuracy of an assembled target (see Fig. 2.5-1).

The permeability of the aluminum overcoat used to contain the fill gas in a capsule for room-
temperature implosions is measured using the permeator time-constant apparatus. The runout is measured
by rotating the target about a pin axis (see Fig. 2.5-2).

T1589

y

x

Figure 2.5-2
The runout must be kept to a minimum.

T1594

Figure 2.5-1
The Powell scope metrology station. This provides 4° of motion to manipulate the target’s position and orthogonal camera
views to measure dimensions.
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2.5.1 Silk and Mount Resonance

The high elastic modules and significant preload result in a high resonant frequency for low-
magnitude impulse-driven signals. The resonant frequency of a “C-mounted” target was measured to
be 142 Hz when driven by a piezoelectric transducer and function generator operating at 2.5-V amplitude
(see Fig. 2.5-3). The GDP target weighed 69 µg with an 877-µm OD and a 30-µm wall thickness. Three
strands of silk were used in this configuration. Table 2.5-1 contains results from this test configuration.

Table 2.5-1: Mounted target resonant frequency as measured
by the piezoelectric transducer.

Average Outer
Diameter

(µm)

Average Wall
Thickness

(µm)

Shell
Material

Average
Resonant
Frequency

(Hz)

Standard
Deviation

(Hz)

925 3.4 CH, CD 297 26

938 9.1 CD 272 39

935 10.0 CD 322 13

932 25.7 CH 260 39

T1595

Figure 2.5-3
Piezoelectric transducer
cryogenic target resonator.


