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An ICF capsule is a pressure amplifier – what’s 
going wrong? 

•  High pressure (>> driving 
pressure) requires energy 
concentration 

•  We’re not getting the 
necessary pressures 

•  We’re making trade-offs 
for mix, but is the 
symmetry sufficient? 

ablator 

DT ice and vapor 

x-ray or 
laser 

~1 mm 
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A tracer highlights shape and gives us reason to 
suggest it’s mattering1 

1 R.C. Shah et al. Phys. Rev. Lett. 118, 135001 (2017)  
 

•  Ti tracer layer provides specificity to the imaging 

•  We identify systematic asymmetries as caused by 
capsule mounting and low-mode in the laser drive 

•  We infer that laser-drive asymmetry imposes an 
important limit on the achieved hot-spot 
pressure. 
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Dopants provide probes (for various purposes) – 
the MMI let’s us image this data 

Concept of MMI 

L. Welser, PhD Thesis. Univ. 
Nevada Reno (2006), RSI (2003) 

Narrow-band image 

T. Nagayama, PhD Thesis. Univ. Nevada 
Reno (2011), JAP (2011), RSI (2015) 
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MMI has been enabling exploration of what really 
happens inside an ICF capsule 

Tracer in gas 
•  Inferences of mixing  

•  Leslie Welser-Sherrill et. al., PRE (2007), POP (2008), HEDP (2009) 
•  3-D reconstruction  

•  Taisuke Nagayama et al POP (2012), POP (2014) 
•  Investigation of ion-thermo-diffusion 

•  Scott Hsu et. al. EPL (2016), Tirtha Joshi et al POP (2017)  

Tracer in shell 
•  Early mixing 

•  J. Baumgaertel et. al., POP (2014). 
•  PDD asymmetries 

•  R. C. Mancini et. al. POP (2014). 
•  Shell areal density asymmetries 

•  H. Johns et. al. POP (2016). 
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To probe the piston, we put the tracer in the 
high-density periphery (plastic) 

mount1

2

 D2

CH+Ti
 CH

(a) (b)

(c)
Nominal 60 beam 
10 / 15 atm DD 
20 µ shell 
0.1 µ 1% Ti 

Yn ~30-40% 1D 
<Ti>n ~130-175% 1D 

Emission is during deceleration 
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mount1

2

 D2

CH+Ti
 CH

(b)(a)

(c)

We create a tagged, emitting hollow shell that 
produces an emission limb 

Emission geometry I(r): Emission limb in 1-D 
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Pressure is the key to reducing input energy1 

1 Here following V. N. Goncharov et. al. Phys. 
Plasmas (2014)   

•  However ablation pressure is ~100 Mbar and we need 
~100 Gbar 

•  Deceleration in spherical geometry is the pressure 
amplifier 
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Is shape a limiter of realized performance at 
OMEGA? 

V. N. Goncharov et. al. Phys. 
Plasmas (2014). 

•  Historical emphasis on high 
mode mix   

 

•  Low PHS of higher stability 
implosions hypothesized to 
result from mode 1  
(S. P. Regan et al., 2016 
PRL)  

Performance vs. Stability 
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High-mode mix is only part of the story 

1B. M. Haines et. al. Phys. Plasmas (2016). 

Clean fuel 

Mix region 

A model of high-mode mix Mix-caps provide a test1 

•  Mix cap signal explained without perturbing overall performance 
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M(u0+Δ) M(u0-Δ’) 

For piston model, center-of-mass motion only 
weakly degrades pressure 

P0, V0, T0 

Pressure tolerates large ΔEp 
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L~1 drive asymmetry decenters pressure 

B. K. Spears et. al., Phys. Plasmas (2014) 

2D Hydra with L=1 Pressure profile 

1D 
L=1 

Density Ti & P 
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Historically used conduction model has been 
reducing the calculated impact of asymmetry 

I. V. Igumenshchev et. al., Phys. Plasmas (2016) 
Sp Spitzer + CBET: Y3D/1D = 0.25  Flux limited: Y3D/1D = 0.85  
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Motion also inflates inferred ion temperature1 

1T.J. Murphy,  
Phys. Plasmas (2014) 

Apparent Ti 
  Eth + 4Ek 

   
10% inefficiency 
in KE to U  
-> 30% inflation 
 

∝

Energy partitioning  
– 1-D & Asymmetric 

I. V. Igumenshchev et. al., Phys. 
Plasmas (2016) 
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Correlation identifies mounting in images 

stalk 

MMI Images, Fixed viewers - 180° flip of mounting 
5-6 keV, ~100 ps prior to bang-time (Cr ~11, 10 atm) 

stalk 
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Stalk mounting disturbs symmetry but has 
negligible impact on yield1 (a) (b)

(c) (d)

 CH

glue

stalk

h

d

1	I.V.	Igumenshchev	et.	al.	Phys.	Plasmas	(2009).	

stalk

0

40

ρ 
(g/cm3)100 μm

•  10-20% degradation with factor 
of two changes in calculation 

•  Experiments insensitive (but 
always ~70% below 1D) 
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Looking opposite the mount, mode 1 emission 
character suggests drive asymmetry 

78505 

mount1

2

 D2

CH+Ti
 CH

(a) (b)

(c) 79980 79972 

5-6 keV, ~100 ps prior to bang-time (Cr ~9, 15 atm) 
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Modulation persists into bang-time, & a spectral fit 
indicates cause is non-trivial 

•  ne  = 5.5 [-1.5,+2.5] E24 cm-3, Te = 1350 [-350,+150] eV 
•  Assuming isobaric conditions Implies ±20% density/

temperature variation! 
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Inferred beam intensities suggest low modes are 
greater than implied by reported beam energies1   

1	F.	J.	Marshall	et.	al.	Phys.	Plasmas	(2004).	

Assumed Actual? 
Aitoff projections of laser distribution on target 

•  Recent measurements show the problem persists 
•  Assumed indicative of magnitude – not orientation 
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In 3-D ASTER1 we find shape (dominantly L~1) 
limits PHS and decenters Ti conditions 

•  ±30% variations of density & temperature 
•  Y3D 40% 1-D , Phs 55% 1-D (big-impact 

relative to observed degradation levels) 

ne cross-section (bang-time) Te cross-section (bang-time) 

1I.V Igumenshchev et. al., Phys. Plasmas (2016). 



Slide 22 U N C L A S S I F I E D 

Synthetic images can capture the observed trend 
(but orientation is unconstrained) 

ASTER 

Data 

time 
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Comparable modulations suggest comparable 
underlying physics, dominated by mode 1 

0 1 2 3 4
10−2

10−1

100

mode
sig

na
l (

ar
b.

 u
nit

s)

(a) (b)

•  Emission is consistent with low mode in the drive  
•  Significant source of performance degradation 
•  Suggests a mechanism for elevated Ti 
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Asymmetry observed using tracer consistent with 
shape limited performance in Omega implosions1 

•  Ti tracer layer provides specificity to the imaging 

•  Observed asymmetries are attributed to capsule mounting 
and L~1 in drive.   

•  2-D and 3-D simulations indicate it’s the L~1 (not the 
mounting) that degrades yield by limiting achieved 
hot-spot pressure. 

•  Look forward to a revolution in symmetry diagnosis – 
will that enable us to break thru the current plateau? 

1 R.C. Shah et al. Phys. Rev. Lett. 118, 135001 (2017)  
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Additional slides 



Slide 26 U N C L A S S I F I E D 

Images at neighboring β lines don’t directly 
elucidate a change in Te 

79972 He Ly 
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Spectral dependency runs counter to opacity -
Modulations are in self-emission 

79976 4.5-5 keV  5.4-6 

t0 

t0 +100 ps 


