Using multi-hohlraum arrays for studying the "Pillars of Creation"

Omega User Group Meeting

April 28th 2017

David Martinez

Lawrence Livermore National Laboratory

LLNL-PRES-729703

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Lawrence Livermore National laboratory

Jave Kane

Bob Heeter

Channing Huntington

University of Maryland

Marc Pound

University of Nevada Reno

Roberto Mancini

CEA

Bruno Villette

Alexis Casner

Outline

- The Pillars of creation
- Generating a long duration x-ray drive
- Initial Shadow experiments
- Initial Cometary experiment

Where Do Pillars Form?

We start with a molecular cloud, T ~ 10 K, L ~ 10 pc, n(H₂) ~ $10^2 - 10^4$ /cc , $10^3 - 10^5$ M₀

Where Do Pillars Form?

One or more massive stars (O/B spectral types) form from a dense core. Intense UV radiation creates H II region.

Lawrence Livermore National Laboratory

Molecular gas

gets

heated.

Where Do Pillars Form?

Pillars form from action of ablation, compression, photoevaporation, photodissociation, recombination.

Maybe from a surface perturbation.

Omega & NIF experiments investigating the pillar structure found in the Eagle Nebula (M16)

O – Type stars

Visible

Infrared

NASA, ESA, and the Hubble Heritage Team (STScI/AURA)

T.A. Rector (NRAO/AUI/NSF and NOAO/AURA/NSF) and B.A. Wolpa (NOAO/AURA/NSF)

Investigating different models explaining the formation of the Eagle nebula.

A spherical cloud with a dense core and power law density profile generates a cometary pillar

Lawrence Livermore National Laboratory

Kane (2006)

A cometary model can reproduce several aspects of the Pillars

The Hydrodynamics of the pillar was scaled using the Mach number inside the Eagle pillar

- The thickness of the absorbing layer near the surface of the target is small compared to other geometrical dimensions, and details of the absorption become less important.
- The density and structure of the clump drop out since for the cometary model the clump mainly acts to
 - Hold back the head of the comet.
 - Provide a reservoir of material that releases down to a low density determined by the drive flux.

Under such circumstances, the similarity between the two systems requires a similar value of the parameter

$$A = \frac{\tau^*}{L^*} \sqrt{\frac{p_{abl}^*}{\rho^*}}$$

where p_{abl} , ρ^* , L^* and τ^* are the characteristic ablation pressure, density, scale length, and time for evolution. As shown in the following table, the scaling is reasonable.

Parameter	Eagle pillar	Laboratory experiment
<i>L</i> * (cm)	3E+18	0.1
p _{abl} (dyne cm ⁻²)	5E-09	1e+10
ρ* (g cm ⁻³)	5E-21	10e-3
<i>τ</i> * (s)	4e+12	1.0e-07
Α	1.33	1

D.D. Ryutov and B.A. Remington, "Scaling astrophysical phenomena to high-energy-density laboratory experiments," Plasma Phys. Control. Fusion 44, B407 (2002). D.D. Ryutov, B.A. Remington, H.F. Robey and R.P Drake, *Phys.Plasmas* 8, 1804 (2001)

Laser driven hohlraums will eventually close due to plasma expansion reducing the x-ray drive.

Dewald et al Phys Rev Lett. (2005)

The multi-hohlraum approach to long duration x-ray sources.

The position of the 50% critical surface suggests the ablative plumes do not interfere with the other hohlraums

t = 39 ns

Beam side

Back side

Lawrence Livermore National Laboratory

Dpne=0.0387535

Hohlraum performance was diagnosed using shock velocity and X-ray flux detectors.

µDMX diagnostic

µDMX is a broadband channel spectrometer designed for X-ray power measurement

- Is composed by 12 channels equipped by filters and XRDs
- Distance XRD / TCC : 500 mm with FOV is Ø 5 mm
- -The 12 signals are recorded by 3 Digital Signal Oscilloscopes (Agilent 4 Ghz).

µDMX 8 channel configuration for Gatling gun campaign

Channel	1	2	3	4	5	6	7	8
Filter Thickness	Al 2 μm	B/Lexan 2 μm / 0.2μm	Mylar 6 µm	Ti 2 μm	V 2 μm	Fe 2 µm	Ni 2 µm	Cu 2 µm
Energy range (eV)	35 – 75	130 - 188	230 - 280	350 - 450	415 - 510	570 - 710	690 - 850	730 - 930

Flux and shock velocity measurements give consistent results for the hohlraum drive

Early and late time observations do not show a reduction in x-ray drive due to hohlraum cross talk.

Hohlraum cross talk includes:

- 1. Plasma plume interference blocking laser light into the next hohlraum
- 2. Shocks breaking into the adjacent hohlraum, causing early hohlraum closure.

Hohlraum temperature from shock velocity measurements

For Quartz sample

$$T_r = 21.4 u_s^{0.57}$$

Olson et al. Rev Sci instrum. 2006

Peak shock velocity in quartz corresponds to peak radiation temperature

Hohlraum	Peak U _s (µm/ns)	Peak T _R (eV)
10 ns (First)	14.8 <u>+</u> 0.1	99
10 ns (Last)	15.6 <u>+</u> 0.1	102

The position of the Laser spot relative to µDMX line of sight explains temperature variation

Variation in laser energy between beams also contributes to the different temperatures.

The average T_R of first hohlraum matches well with 2nd and 3rd

hohlraum when adjusted for the view factor.

*product of Prism Computational Sciences Inc.

Omega EP is able to test the concept of driving a hydrodynamic flow using the long duration x-ray source X-ray measurement from laser

The debris from the hohlraum array is problematic.

Debris from the hohlraum prevents us from using point projection radiography

Area backlighter used multiple pinholes to increase FOV.

4x4 pinhole images

Increased energy and reduced foam density shows more evolution.

Simulations with a 56mg/cc RF foam with a 370µm diameter ball show the shock just passing the clump.

Discovery science experiments on NIF used the hohlraum and backlighting designs developed on Omega EP

NIF was able to reproduce the results from Omega EP.

Four hohlraum drive was able to create a 60ns ~160eV x-ray source.

----- N150917-003-999 Static LEH Temperature_13k (eV)

– – N150917-004-999 Static LEH Temperature_13k (eV)

Dante Analysis by Alastair Moore

Special thanks to: Bart Beeman and Bob Chow for setting up the 100ns Dante

Eagle Nebula experiments are exploring the evolution of the "Pillars of Creation" on the NIF

A multi-hohlraum array was used to drive an ablative pillar for 60ns

Astrophysics simulations show that the shadow model tested does not match the measured profiles.

Investigating the cometary model requires us to probe a lower density plasma.

Between 10-20 ns in time we see the pre-pillar evolution

Eagle target was stood off by 3mm from hohlraum source and earlier in time to assess the initial plasma expansion from the Eagle target and the hohlraum

At 40ns the blow off plasma from the hohlraum blocks the 4w Field of view

Two hohlraums were co-timed to increase X-ray flux for 20ns with 4mm stand off distance.

The cometary experiments on Omega were tested on NIF using two backlighters.

3D HYDRA reproduces the evolution and asymmetry with a 120 eV drive

Simulations by Jave Kane

Preliminary data from Omega using x-ray radiography with the cometary target provides useful information on the early time evolution.

Lawrence Livermore National Laboratory

36 ULNL-PRES-729703

Conclusions

- The hohlraum array is capable of generating a ~90 eV radiation temperature for 30ns On Omega (NIF for 60ns @120eV)
- Experiments show that we can radiograph a foam target and a cometary target
- Staging experiments on Omega refined our designs for NIF.

The multi-source platform can be used to drive a hydrodynamic flow for 30ns

Photoionization experiments need low ρ, high flux & equilibration time

ξ in photoionized plasmas

Photoionized plasmas* can be roughly characterized by the ionization scaling parameter ξ = 4 π Γ / n_e

*Tarter, et al., ApJ. <u>156</u> 943 (1969) Tarter, et al., ApJ. <u>156</u> 953 (1969)

 ξ ~ 1000 is typical of X-ray binaries (accretion disks around black holes consuming stars)

Past and ongoing experiments on Z-1999-2013: ξ=10-100 erg cm/s

R.F. Heeter et al., RSI 72, 1224 (2001); M.E. Foord et al., PRL 93, 055002 (2004); S. Rose, J. Phys. B: At. Mol. Opt. Phys. 37, L337 (2004); R.C. Mancini et al, PoP 16, 041001 (2009).

Omega EP achieved $\xi \ge 5$ for 30 ns:

n_e = 10¹⁹/cm³ (CH-tamped exploding foil) Flux = σ T_r⁴ * R²_{hohlraum} / D²_{sample}. with T_r = 90 eV, R = 0.1 cm, D = 0.4 cm: ξ = 4π Flux / n_e ≈ 5 x 10¹⁹ / 10¹⁹ ≈ 5

Photoionized Ti was observed from **30ns x-ray drive pulse.**

