Characterization of Ultrafast Gated Optical **Inagers for the OMEGA Beamlets Diagnostic**

J. KATZ, M. BEDZYK, D. H. EDGELL, C. M. ROGOFF, M. SICKLES, J. SZCZEPANSKI, D. P. TURNBULL, D. WEINER, and D. H. FROULA **University of Rochester, Laboratory for Laser Energetics**

Summary

A platform for characterizing the timing and imaging performance of gated optical imagers has been developed

 Gated optical imagers (GOI's) are 2-D imaging systems that provide "electric shutters" with exposure durations as short as 200 ps • The GOI consists of a microchannel-plate (MCP)—based image

- intensifier coupled to a charged-coupled device (CCD)
- The optical gate profile of the MCP has been characterized using a short-pulse laser
- Detailed flat fielding of gain is required to make ratio measurements between different locations across the image sensor
- A GOI has been deployed on OMEGA to image scattered 3ω light refracted off plasma density gradients

Linear dynamic range

The GOI is a 2-D imaging device that uses a microchannel plate to control light amplification as a function of time

	UR 👋
Object Image Image	Readout
plane relay intensifier t	ube camera
Input photocathode Output phosphor screen	
Parameter	Value
Photocathode size	Ø18 mm diam
Point-spread function	40 μm
Number of spatial-resolution elements	250,000
Minimum gate duration	200 ps
On/off gate-contrast ratio	1,000,000
Gain	0.5 to 500 CCD e ^{-/} photoelectron

100×

A short-pulse (10-ps) laser source is available to characterize temporal resolution of fast detectors

ROCHESTER

LLE

Summary

A platform for characterizing the timing and imaging performance of gated optical imagers has been developed

- Gated optical imagers (GOI's) are 2-D imaging systems that provide "electric shutters" with exposure durations as short as 200 ps
- The GOI consists of a microchannel-plate (MCP)—based image intensifier coupled to a charged-coupled device (CCD)
- The optical gate profile of the MCP has been characterized using a short-pulse laser
- Detailed flat fielding of gain is required to make ratio measurements between different locations across the image sensor
- A GOI has been deployed on OMEGA to image scattered 3ω light refracted off plasma density gradients

The GOI is a 2-D imaging device that uses a microchannel plate to control light amplification as a function of time

Parameter	Value
Photocathode size	Ø18 mm diam
Point-spread function	40 μm
Number of spatial-resolution elements	250,000
Minimum gate duration	200 ps
On/off gate-contrast ratio	1,000,000
Gain	0.5 to 500 CCD e ^{-/} photoelectron
Linear dynamic range	100×

A short-pulse (10-ps) laser source is available to characterize temporal resolution of fast detectors

*AOM: acousto-optic modulator

UR 🔌

The GOI creates an "electronic" shutter by controlling the voltage between the photocathode and the MCP

High-voltage (HV) pulser board trace

Shutter on/off time is limited by pulser electronics and pulse propagation across the surface of the photocathode.

GOI cross section

The duration of the MCP gate can be measured by varying the arrival time of the laser

- A photodiode is used to compare laser timing relative to GOI monitor pulse; trigger jitter is measured to better than 10 ps
- The photodiode is also used to measure pulse laser energy; fluctuations in laser energy can be zeroed out
- Total CCD counts are summed to measure GOI gain at a particular time during the gate

^{*}FCC: frequency-conversion crystal

The MCP gain as a function of time has been measured with 10-ps timing resolution

With a 40- μ m point-spread function, the 18-mm MCP provides over 250,000 spatial-resolution elements UR 火

30% contrast

Pixels

LLE

Spatial nonuniformities of the MCP gain over the duration of the gate are measured to generate a flat-field calibration

The achievable signal to noise (SNR) of the GOI detector is confined by counting statistics and a limited linear operating range of the MCP

The "beamlets" imaging diagnostic provides a measurement of cross-beam energy transfer (CBET)

- Each 351-nm drive beam produces a uniquely imaged spot (beamlet) when scattered by the target, with a specific path through the corona
- Measure intensity of spots to find the effect of CBET on each beamlet
- Short exposure times are needed to resolve beamlets spots in motion during the late stages of implosion

The beamlets diagnostic uses a wedged etalon to create an additional spatially and temporally separated image at the detector image plane

Several image frames can be recorded with a single exposure using a wedged etalon.

A GOI has been deployed on OMEGA to image scattered 3ω light refracted of plasma density gradients

UR

