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Abstract
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CVD diamond detectors are being investigated as alternatives
to scintillators. A neutron-detection model has been developed
to quantify the energy deposited per neutron interaction using
measured detector sensitivities. The average energy deposited
per interaction was 27 to 44 keV for 14-MeV neutrons and 4.8 keV
for 2.5-MeV neutrons. Data were obtained for four detectors used
on OMEGA. Using known electron mobility and signal rise times,
the effective thicknesses of the detectors were calculated. This
work provides insight that will aid the development of future 
CVD detectors.

The energy deposited per incident neutron in a chemical-
vapor–deposition (CVD) diamond detector was quantifi ed

Summary

TC12717

• A detection model for neutrons was developed
using measured sensitivities

• Up to 44 keV is deposited per 14-MeV neutron interaction 
and 4.8 keV is deposited for 2.5-MeV neutrons 

• The measured signal rise time was used to calculate
the effective thickness of the detectors

CVD diamond detectors offer signifi cant advantages 
over scintillators

Motivation
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CVD diamond detector Scintillator
Advantages

Disadvantages

• Low noise because of 
wide band gap (5.5 eV)

• Fast time response

• Manufacturing variability

• Response models needed

• Less sensitive to low-
energy neutrons

• Well-developed 
technology

• Extensive response 
models exist

• Response properties 
change over time

• Decay times compromise 
time response
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Incident neutrons react in CVD diamond through multiple 
reaction channels, creating electron-hole pairs
and leading to a signal voltage as a function of time
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*M. Angelone et al., Radiat. Meas. 46, 1686 (2011).

Reaction* Threshold
(MeV)

12C(n, c)13C 0

12C(n, a)9Be 6.18

12C(n, nl2a)4He 7.88

12C(n, 2a)8Be 7.98

12C(n, 2a)5Be 8.85

12C(n, p)12Be 13.64
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A model has been developed to estimate the energy 
deposited per neutron in a CVD detector
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• The detector sensitivity (a, neutrons/V • ns) is also 
determined from the experimental voltage pulse

dV t

Ninca =
#

• The number of interactions within the detector is

N N t nCint inc v=

where
 Ninc  = number of incident neutrons = Yield • 

4
det
r
X

 v = total cross section for neutron–carbon interactions
 nC = number density of carbon atoms
 Xdet = detector solid angle 

• The number of electron-hole pairs is determined 
from the experimental voltage pulse

2e

d

RN
V t

eh =
#

where  e = electron charge
 R = resistance of detection system

• The average energy deposited 
per neutron interaction is

E E N
N

dep o
int

eh=

where  Eo = energy needed to create
   an electron-hole pair in diamond (= 13.2 eV) 
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The average energy deposited per neutron interaction 
has been calculated for different CVD diamond detectors
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Different sensitivities are observed for different 
CVD detector systems 
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• The variability is dependent on factors related 
to the fabrication of synthetic diamond

– mosaic structure

– dopants, both intended and unintended

– dopant concentration

– microcrystalline size
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A model was used to calculate the effective 
thickness of each detector
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• The effective thickness
is given by*
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*E. Pavlica and G. Bratina, Appl. Phys. Lett. 101, 093304 (2012).

where

VL Leff ) )x n=

 x = rise time (10% to 90%)
 n = electron mobility
   in diamond
 V = bias voltage
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The effective thickness is consistently 
less than the total thickness
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A layer of 6LiF can be used to increase the sensitivity 
to low-energy neutrons
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• Neutrons interact with 6LiF in the 95% enriched 6LiF layer

 n + 6Li $ T (2.73 MeV) + a(2.06 MeV)

• The T and a are emitted at 180°, so either the T or the a is detected

• Neutrons below 6 MeV can be detected
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*A. Pietropaolo et al., Nucl. Instrum. Methods Phys. Res. A 610, 677 (2009).

TCVDV R

Electrode

n

6LiF

aCVD

Multilayered structures can be used to improve 
the response for large neutron fl uxes
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• Conductive layers are added to decrease the thickness
of the electron-hole drift regions

• Each structure has the same total thickness of CVD diamond (1 mm)
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The fraction of incident neutrons detected is determined 
by the total cross section and the CVD detector thickness
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The model uses the measured sensitivities

TC12724

8

0.0

0.5

1.0

1.5

5.8-m CVD 15.9-m CVD HYNBT DT HYNBT DD In
ci

d
en

t 
n

eu
tr

o
n

s 
p

er
 V

 • 
n

s 
(#

10
7 )

 

Future Developments



The energy deposited per incident neutron in a chemical-
vapor–deposition (CVD) diamond detector was quantified

Summary
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• A detection model for neutrons was developed 
using measured sensitivities

• Up to 44 keV is deposited per 14-MeV neutron interaction 
and 4.8 keV is deposited for 2.5-MeV neutrons 

• The measured signal rise time was used to calculate 
the effective thickness of the detectors



CVD diamond detectors offer significant advantages 
over scintillators

Motivation
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• Low noise because of 
wide band gap (5.5 eV)

• Fast time response

• Manufacturing variability

• Response models needed

• Less sensitive to low-
energy neutrons

• Well-developed 
technology

• Extensive response 
models exist

• Response properties 
change over time

• Decay times compromise 
time response
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CVD diamond detectors are being investigated as alternatives 
to scintillators. A neutron-detection model has been developed 
to quantify the energy deposited per neutron interaction using 
measured detector sensitivities. The average energy deposited 
per interaction was 27 to 44 keV for 14-MeV neutrons and 4.8 keV 
for 2.5-MeV neutrons. Data were obtained for four detectors used 
on OMEGA. Using known electron mobility and signal rise times, 
the effective thicknesses of the detectors were calculated. This 
work provides insight that will aid the development of future 
CVD detectors.



Incident neutrons react in CVD diamond through multiple 
reaction channels, creating electron-hole pairs 
and leading to a signal voltage as a function of time
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*M. Angelone et al., Radiat. Meas. 46, 1686 (2011).
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A model has been developed to estimate the energy 
deposited per neutron in a CVD detector
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• The detector sensitivity (a, neutrons/V • ns) is also 
determined from the experimental voltage pulse

dV t

Ninca =
#

• The number of interactions within the detector is

N N t nCint inc v=

where
 Ninc  = number of incident neutrons = Yield • 

4
det
r
X

 v = total cross section for neutron–carbon interactions
 nC = number density of carbon atoms
 Xdet = detector solid angle 

• The number of electron-hole pairs is determined 
from the experimental voltage pulse

2e

d

RN
V t

eh =
#

where  e = electron charge
 R = resistance of detection system

• The average energy deposited 
per neutron interaction is

E E N
N

dep o
int

eh=

where  Eo = energy needed to create 
   an electron-hole pair in diamond (= 13.2 eV) 
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The fraction of incident neutrons detected is determined 
by the total cross section and the CVD detector thickness
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Different sensitivities are observed for different 
CVD detector systems 
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• The variability is dependent on factors related 
to the fabrication of synthetic diamond

– mosaic structure

– dopants, both intended and unintended

– dopant concentration

– microcrystalline size
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The model uses the measured sensitivities
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The average energy deposited per neutron interaction 
has been calculated for different CVD diamond detectors
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A model was used to calculate the effective 
thickness of each detector

TC12726

• The effective thickness 
is given by*

10

*E. Pavlica and G. Bratina, Appl. Phys. Lett. 101, 093304 (2012).

where
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 x = rise time (10% to 90%)
 n = electron mobility 
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The effective thickness is consistently 
less than the total thickness
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A layer of 6LiF can be used to increase the sensitivity 
to low-energy neutrons
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• Neutrons interact with 6LiF in the 95% enriched 6LiF layer

 n + 6Li $ T (2.73 MeV) + a(2.06 MeV)

• The T and a are emitted at 180°, so either the T or the a is detected

• Neutrons below 6 MeV can be detected

12

*A. Pietropaolo et al., Nucl. Instrum. Methods Phys. Res. A 610, 677 (2009).
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Multilayered structures can be used to improve 
the response for large neutron fluxes
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• Conductive layers are added to decrease the thickness 
of the electron-hole drift regions

• Each structure has the same total thickness of CVD diamond (1 mm)
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