Analysis of Chemical-Vapor-Deposition Diamonds for Neutron Detection on OMEGA

I. SETH* and J. P. KNAUER

University of Rochester, Laboratory for Laser Energetics *Brighton High School and Summer High School Research Program

The energy deposited per incident neutron in a chemicalvapor-deposition (CVD) diamond detector was quantified

- A detection model for neutrons was developed using measured sensitivities
- Up to 44 keV is deposited per 14-MeV neutron interaction and 4.8 keV is deposited for 2.5-MeV neutrons
- The measured signal rise time was used to calculate the effective thickness of the detectors

Motivation

CVD diamond detectors offer significant advantages over scintillators

CVD diamond detector Scintillator Advantages Low noise because of Well-developed wide band gap (5.5 eV) technology • Fast time response • Extensive response models exist Disadvantages • Manufacturing variability • Response properties change over time **Response models needed** • Decay times compromise Less sensitive to lowtime response energy neutrons CVD N-type **Scintillator** Spring Lead washer connector diamond Signal/ bias line Gate **PMT140** Signal

Abstract

UR

Incident neutrons react in CVD diamond through multiple reaction channels, creating electron-hole pairs and leading to a signal voltage as a function of time

Transmission

line

R (50 Ω)

^{*}M. Angelone et al., Radiat. Meas. <u>46</u>, 1686 (2011).

A model has been developed to estimate the energy deposited per neutron in a CVD detector

where E_0 = energy needed to create an electron-hole pair in diamond (= 13.2 eV)

 The detector sensitivity (α, neutrons/V • ns) is also determined from the experimental voltage pulse

$$\alpha = \frac{N_{\rm inc}}{\int V dt}$$

The fraction of incident neutrons detected is determined by the total cross section and the CVD detector thickness

TC12722

Different sensitivities are observed for different CVD detector systems

- The variability is dependent on factors related to the fabrication of synthetic diamond
 - mosaic structure
 - dopants, both intended and unintended
 - dopant concentration
 - microcrystalline size

The model uses the measured sensitivities

The average energy deposited per neutron interaction has been calculated for different CVD diamond detectors

UR

A model was used to calculate the effective thickness of each detector

*E. Pavlica and G. Bratina, Appl. Phys. Lett. <u>101</u>, 093304 (2012).

UR 🔌

The effective thickness is consistently less than the total thickness

UR LLE

A layer of ⁶LiF can be used to increase the sensitivity to low-energy neutrons

• Neutrons interact with ⁶LiF in the 95% enriched ⁶LiF layer

 $n + {}^{6}\text{Li} \longrightarrow T (2.73 \text{ MeV}) + \alpha(2.06 \text{ MeV})$

- The T and α are emitted at 180°, so either the T or the α is detected
- Neutrons below 6 MeV can be detected

^{*}A. Pietropaolo et al., Nucl. Instrum. Methods Phys. Res. A 610, 677 (2009).

Multilayered structures can be used to improve the response for large neutron fluxes

- Conductive layers are added to decrease the thickness of the electron-hole drift regions
- Each structure has the same total thickness of CVD diamond (1 mm)