High-Resolving-Power, Ultrafast Streaked X-Ray Spectroscopy on OMEGA EP

P. M. Nilson University of Rochester Laboratory for Laser Energetics Omega Laser Facility Users Group Workshop Rochester, NY 27–29 April 2016

A high-resolving-power, streaked x-ray spectrometer is being developed and tested on OMEGA EP

- The goal is to achieve resolving power of several thousand and 2-ps temporal resolution
- Temporal spectral shifts on the Cu K_{α} line in isochorically heated solid targets provide a fairly simple system where the spectrometer performance will be validated
- The instrument will be used to measure temperature-relaxation dynamics and material response to ultrafast heating at depth

Development is underway to deploy the instrument on OMEGA EP by Q2FY17.

F. Ehrne, C. Mileham, D. Mastrosimone, R. K. Jungquist, C. Taylor, R. Boni, J. Hassett, D. J. Lonobile, R. W. Kidder, M. J. Shoup III, A. A. Solodov, C. Stoeckl, and D. H. Froula*

> University of Rochester Laboratory for Laser Energetics *also Department of Physics

K. M. Hill, L. Gao, M. Bitter, and P. Efthimion

Princeton Plasma Physics Laboratory

D. D. Meyerhofer

Los Alamos National Laboratory

- Motivation
 - temperature-equilibration dynamics
 - material response to ultrafast heating at depth
- Conceptual design
 - high-resolution spectrometer (HiResSpec)
- Phase I
 - time-integrating x-ray spectrometer
- Phase II
 - time-resolved x-ray spectrometer
- Summary and conclusions

Outline

- Motivation
 - temperature-equilibration dynamics
 - material response to ultrafast heating at depth
- Conceptual design
 - high-resolution spectrometer (HiResSpec)
- Phase I
 - time-integrating x-ray spectrometer
- Phase II
 - time-resolved x-ray spectrometer
- Summary and conclusions

Motivation

A high-energy ultrafast laser can heat solid-density material on a time scale much faster than the material expands

- Heating at high density produces exotic states of matter in extreme thermodynamic conditions
 - matter in these states is normally found only in the interiors of planets or dense stars¹
- The possible extremes in temperature enables novel material and radiative properties experiments²
 - e.g., mean opacity of solar interior matter³
- New diagnostic techniques are sought for testing
 - plasma-dependent atomic processes⁴
 - plasma opacity⁵ and equationof-state models⁶

These studies require dense, high-temperature plasmas that are well characterized.

UR

- ²K. Nazir et al., Appl. Phys. Lett. <u>69</u>, 3686 (1996).
 - ³J. E. Bailey *et al.*, Nature <u>517</u>, 56 (2015).
 - ⁴D. J. Hoarty *et al.*, Phys. Rev. Lett. <u>110</u>, 265003 (2013).
 - ⁵R. A. London and J. I. Castor, High Energy Density Phys. <u>9</u>, 725 (2013).
- ⁶M. E. Foord, D. B. Reisman, and P. T. Springer, Rev. Sci. Instrum. <u>75</u>, 2586 (2004).

E21173e

¹A Report on the SAUUL Workshop, Washington, DC (17–19 June 2002).

Motivation

An experimental platform is being developed to study heating of dense matter by laser-generated hot electrons

¹P. M. Nilson et al., Phys. Rev. Lett. <u>105</u>, 235001 (2010). ²P. M. Nilson et al., Phys. Rev. Lett. 108, 085002 (2012). ³P. M. Nilson et al., J. Phys. B <u>48</u>, 224001 (2015).

Frequency: 1ω Intensity: >10¹⁸ W/cm²

E25090

Uncertainties exist in the hot-electron equilibration dynamics and material response to ultrafast heating at depth

- The plasma conditions are inferred from x-ray spectroscopic measurements
- Data interpretation¹ implies accurate modeling of
 - the early-time heating dynamics
 - the radiative properties of the heated sample
- To produce synthetic spectra, one must describe the major physical processes
 - hot-electron generation and relaxation phases
 - radiative-hydrodynamic evolution of the target
- Time-resolved measurements are required to test energy-partition and temperature-equilibration model predictions for different materials and heating profiles

In these conditions, measuring the ionization distribution is of fundamental importance for understanding plasma production and radiation conditions.²

E25091

UR

¹ V. Dervieux et al., High Energy Density Phys. <u>16</u>, 12 (2015).

² J. F. Seely *et al.*, High Energy Density Phys. <u>9</u>, 354 (2013).

Motivation

Outer shell ionization affects the energy and shape of the characteristic K_{α} line in a partially ionized plasma

The transition energies are sensitive to the configuration of bound electrons.

E18508

¹K. Słabkowska et al., High Energy Density Phys. <u>15</u>, 8 (2015).

²K. Słabkowska et al., High Energy Density Phys. <u>14</u>, 30 (2015).

³G. Gregori et al., Contrib. Plasma Physics <u>45</u>, 284 (2005).

⁴P. M. Nilson et al., Phys. Plasmas <u>18</u>, 042702 (2011).

Motivation

OLUG played an important role in fostering the collaboration between LLE and PPPL on high-resolution x-ray spectroscopy

- The National Diagnostic Plan recognizes the transformational impact of high-resolving-power x-ray spectroscopy
 - inertial confinement fusion (ICF) physics
 - high-energy-density (HED) physics
- Better measurements are needed
 - coupling to picosecond resolution x-ray detectors provides crucial insight on equilibration dynamics
- In 2012, initial MTW experiments were being carried out on resolving K-line shifts with an ultrafast x-ray streak camera
- At the OLUG Workshop that year, K. Hill presented various concepts for high-resolving-power x-ray spectrometers

An OMEGA EP platform was proposed to combine these efforts, which became the HiResSpec Project.

K. Hill and M. Bitter (PPPL) Initial Si220 crystal tests

F. Ehrne (LLE) Si220 crystal alignment for OMEGA EP shots

E25108

Outline

- Motivation
 - temperature-equilibration dynamics
 - material response to ultrafast heating at depth
- Conceptual design
 - high-resolution spectrometer (HiResSpec)
- Phase I
 - time-integrating x-ray spectrometer
- Phase II
 - time-resolved x-ray spectrometer
- Summary and conclusions

Conceptual Design

The instrument is based on two diagnostic channels, each with a spherical Bragg crystal

Spectrometer Design

The instrument parameters are set by the expected Cu K $_{\alpha}$ line shifts

- X-ray source size: ~100 μm²
- Spectral range: 7.97 to 8.11 keV
- Resolving power: ~5000 (streak-camera limited)

 Spectral shifts: few eV to 20-eV line shifts

- K_α flash time: few picoseconds to 20 ps
- Streak-camera temporal resolution: ~2 ps

E23449a

Conceptual Design

Temporal spectral shifts on the Cu K $_{\alpha}$ line in rapidly heated solid matter will validate the spectrometer performance

- PlasmaGEN and PrismSPECT collisional-radiative model calculations*
- $2-\mu m$ Cu foil
- Linear heating gradient from 1 to 350 eV over 10 ps
- Synthetic detector parameters
 - resolving power $\lambda/\Delta\lambda$: 1000
 - temporal resolution: 2 ps

Model Update

E25130

CHESTER

Synthetic spectra are calculated by post processing LSP output with tabulated collisional-radiative model predictions

25 1.0 Synthetic spectra from hot, **OMEGA EP OMEGA EP** dense matter are required 20 20- μ m Cu foil 20- μ m Cu foil Time (ps) 100 J, 1 ps 100 J, 1 ps 15 - energy-transport 0.5 physics Normalized signal 10 LSP calculates cold 5 **K-line emission** 0.0 • Post process *LSP* output in MATLAB using tabulated 25 1.0 **OMEGA EP OMEGA EP** collisional-radiative data 20 10- μ m Cu foil $10-\mu$ m Cu foil from PrismSPECT* Time (ps) 400 J. 1 ps 400 J. 1 ps 15 0.5 uses the local density 10 and temperature at the time of emission 5 0.0 includes line-of-sight 8000 8000 8050 8100 8150 8050 8100 and high- T_e opacity X-ray energy (eV) X-ray energy (eV) effects

*Prism Computational Sciences, Inc. Madison, WI 53711

15

8150

UR

Survey Experiments

Survey experiments on the MTW laser have demonstrated temporal spectral shifts on the Cu K $_{\alpha}$ line

As the plasma heats, higher ionization and excited states are populated.

LLE

Project Structure

To understand system performance and mitigate risk, HiResSpec is being implemented in two phases

Project Structure

To understand system performance and mitigate risk, HiResSpec is being implemented in two phases

Signal alignment to the streak camera

Outline

- Motivation
 - temperature-equilibration dynamics
 - material response to ultrafast heating at depth
- Conceptual design
 - high-resolution spectrometer (HiResSpec)
- Phase I
 - time-integrating x-ray spectrometer
- Phase II
 - time-resolved x-ray spectrometer
- Summary and conclusions

Survey Spectrometer

The Phase I spectrometer was deployed on OMEGA EP for experiments and diagnostic development in January 2016

Deck 2 modifications

Survey Spectrometer

The Phase I spectrometer was deployed on OMEGA EP for experiments and diagnostic development in January 2016

Shielding Tests

OMEGA EP data show average background signals per pixel of up to 1000 ADU at 1.65 m from the source

A 5-cm direct line-of-sight lead shielding reduced the background to ~50 ADU.

Crystal Manufacturing

Inrad Optics manufactured the crystal assemblies

• The silicon crystal is 100 μ m thick and 25 mm imes 100 mm in size

UR

 The crystal is optically bound to a glass substrate that is shaped to a radius of *R* = 330 mm

Spectrometer Measurements

High-power experiments show excellent focusing fidelity, resolving power, and throughput

Photometrics

The Si220 throughput will provide a measurable signal on the PJX-3 streak camera

- The measured throughput is 1.4 \times 10^{-7} ph/ph
- The photometric estimates are based on
 - laser energy: 100 J
 - x-ray flash duration: 10 ps
- The predicted signal at the streak camera are
 - 1700 ADU's per pixel for K_{α_1}
 - 860 ADU's per pixel for K_{α_2}

Phase I has provided the foundation for designing and implementing the time-resolved instrument.

Outline

- Motivation
 - temperature-equilibration dynamics
 - material response to ultrafast heating at depth
- Conceptual design
 - high-resolution spectrometer (HiResSpec)
- Phase I
 - time-integrating x-ray spectrometer
- Phase II
 - time-resolved x-ray spectrometer
- Summary and conclusions

Mechanical Design

The Phase II instrument adds a second crystal assembly and the PJX-3 x-ray streak camera for time-resolved measurements

Alignment and Stability

The x-ray signal must be aligned to a 50- μ m-wide high-throughput region on the photocathode

The alignment plate is the crucial component for transferring alignment from an x-ray CCD to the photocathode.

E25099

UR 🔌

Mechanical Design

Significant shielding assemblies are required for the x-ray streak camera

UR 🔌

Streak Camera Mount

The PJX-3 camera subframe assembly accommodates the required orientations for deployment and alignment

Streak-Camera Alignment

Fine adjust along four degrees of freedom is provided near the PJX-3 cathode*

*For detailed tolerance analysis, see D-HS-R-121 Rev A (March 2015).

HiResSpec will be deployed for commissioning and first high-power shots in Q2FY17

- Phase II implementation includes six support activities
 - build the PJX-3 streak camera
 complete
 - PJX-3 impulse-response measurements
 in progress
 - PJX-3 sweep-speed calibration with 4 ω pulses in progress
 - test new photocathode plates
 in progress
 - calibrate PJX-3's 2-D imaging mode
 in progress
 - complete PJX-3 shielding tests on OMEGA EP in progress
- The final design review (FDR) is scheduled for 27 June 2016
- Following instrument fabrication, the system will be deployed and integrated into OMEGA EP during November and December 2016

Operational Readiness Review (ORR)—4 January 2017.

A high-resolving-power, streaked x-ray spectrometer is being developed and tested on OMEGA EP

- The goal is to achieve resolving power of several thousand and 2-ps temporal resolution
- Temporal spectral shifts on the Cu K_{α} line in isochorically heated solid targets provide a fairly simple system where the spectrometer performance will be validated
- The instrument will be used to measure temperature-relaxation dynamics and material response to ultrafast heating at depth

Development is underway to deploy the instrument on OMEGA EP by Q2FY17.

The high-resolution spectrometer uses the PJX3 streak camera; streak-camera calibration is underway on the MTW laser

Streak camera	Temporal window (ns)	Temporal resolution (ps)	Dynamic range	Spatial resolution at x-ray photocathode (mm)	X-ray photocathode length (mm)	Number of spatial- resolution elements
PJX3* inverse mode	2 (0.5)	2	30:1**	0.018	6	330

^{*}P. A. Jaanimagi: Photonis model P853 streak tube **Space-charge–broadening limited

E23448a

Shielding Tests

The shielding requirements are based on photometric calculations and high-power background measurements

- Throughput: 1.4×10^{-8} ph/ph
- Laser energy: 1000 J
- K_{α} conversion efficiency: 1 × 10⁻³
- Photocathode: two secondary electrons per absorbed K_{α} photon
- Internal magnification: 4×
- Number of analog-digital units (ADU's) per electron: 100
- Sweep: 0.5 ns
- Binning: 1 × 1
- Flash time: 15 ps

These system parameters are based on prudent estimates.

