Steineliss selug-inoris RE ADENO

J. KWIATKOWSKI, M. BARCZYS, M. BEDZYK, A. KALB, B. E. KRUSCHWITZ, C. MCMAHON, T. NGUYEN, A. L. RIGATTI, and M. SACCHITELLA

University of Rochester, Laboratory for Laser Energetics

Summary

A diagnostic has been developed to characterize

mirrors and the off-axis parabolas (OAP's)

A ratiometer technique has been implemented to characterize transmission through the final **OMEGA EP short-pulse optics**

Laser damage and target debris can significantly impact transmission of the final optics

• This is of particular concern on the OAP's because of their close proximity to target chamber center (TCC)

Images of off-axis parabolas in use on OMEGA EP

Laser damage to coating

Imprint from **Contamination from**

"laser-cleaning" effect

target shot debris

OMEGA EP backlighter measurements 83.9 83.7 ♦83.8 84 ×83.4 ♦82.9 83 **♦ 83.1** 82 **♦** <u>81.5</u> ♦ 80.3 80 One day of shots ×78.9 One day of shots ▲ ♦78.2 78 ♦ UCBL - No DDS ♦ 77.6
♦ 77.3 77 La **UCBL - DDS** × LCBL - No DDS 76 **X LCBL - DDS •**75.9 ★ Shot days 75 7/ 2/5/15 2/6/15 2/11/15 11/6/14 1/17/14 1/18/14 1/19/14 1/30/15 1/20/14 11/7/14 1/29/1 1/11/1 UCBL: upper-compressor backlighter LCBL: lower-compressor backlighter E23896a

Transmission data is now used to provide more-accurate on-target energy estimates and assess campaign impact on short-pulse optics

 Transmission data are stored in shot database tables

- Results are applied to reported "SP on target" energy
- DDS use requirements for follow-up campaigns will be derived from this data

Beamline Energy Report											
Log Number: 2	20301	at	10-Feb-2015	17:40:03	3						
Beam	1		2		3		4				
Shot Type	6		7		6		6				
	Energy	Units	Energy	Units	Energy	Units	Energy	Unit			
Inj. ED	48.1	mJ	265.5	mJ	11.8	mJ	70.7	mJ			
Inj. NF	68.0	mJ	241.6	mJ	11.0	mJ	72.0	mJ			
IRDP NF	-370.8	J	1017.3	J	526.5	J	13381.2	J			
SPDP NF			826.4	J							
HCD Energy			589.1	J							
UV Cal	2664.2	J			470.4	J	2563.6	J			
HED Total	2486.8	J			472.5	J	2523.0	J			
HED R	758.0	J			332.2	J	756.4	J			
HED G	36.1	J			19.4	J	46.6	J			
HED B	1692.8	J			120.9	J	1719.9	J			
UV NF					121.2	J	1677.6	J			
SP On Target			801.6	J)							
UV On Target	1545.3	J			110.4	J	1570.0	J			

A similar diagnostic for OMEGA EP UV beams is in development.

E24004a

A diagnostic has been developed to characterize transmission losses in the OMEGA EP short-pulse transport paths

- As a result of pickoff location, on-shot energy diagnostics cannot measure losses from damage or target debris in the final transport mirrors and the off-axis parabolas (OAP's)
- The short-pulse ratiometer diagnostic was designed to provide accurate measurement and tracking of transmission performance through the final optics
- This diagnostic provides more-accurate on-target energy reports and for a more-deterministic method of specifying disposable debris shield usage

Transmission measurements are now acquired before and after all short-pulse target shot days.

Reported on-target energy is determined by the short-pulse diagnostic package near-field (SPDP NF) charge-coupled device (CCD)

Laser damage and target debris can significantly impact transmission of the final optics

• This is of particular concern on the OAP's because of their close proximity to target chamber center (TCC)

Images of off-axis parabolas in use on OMEGA EP

Laser damage to coating

Imprint from "laser-cleaning" effect

Contamination from target shot debris

A ratiometer technique has been implemented to characterize transmission through the final OMEGA EP short-pulse optics

Short-pulse ratiometer measurements are now acquired for all target campaigns

- Initial measurements are acquired in advance of shots as part of short-pulse transport and focusing process
- Measurements are taken after all target shot days
 - process takes ~45 min after conclusion of shots
- Additional measurements required before and after disposable debris shield (DDS) installation/removal

UCBL: upper-compressor backlighter LCBL: lower-compressor backlighter

LL

OMEGA EP sidelighter measurements

UR 👐

LL

OMEGA EP to OMEGA (joint shot) measurements

Transmission data is now used to provide more-accurate on-target energy estimates and assess campaign impact on short-pulse optics

- Transmission data are stored in shot database tables
- Results are applied to reported "SP on target" energy
- DDS use requirements for follow-up campaigns will be derived from this data

		Beaml	ine Energy F	leport				
Log Number:	20301	at	10-Feb-2015	17:40:03				
Beam	1		2		3		4	
Shot Type	6		7		6		6	
	Energy	Units	s Energy	Units	Energy	Units	Energy	Units
Inj. ED	48.1	mJ	265.5	mJ	11.8	mJ	70.7	mJ
Inj. NF	68.0	mJ	241.6	mJ	11.0	mJ	72.0	mJ
IRDP NF	-370.8	J	1017.3	J	526.5	J	13381.2	J
SPDP NF			826.4	J				
HCD Energy			589.1	J				
UV Cal	2664.2	J			470.4	J	2563.6	J
HED Total	2486.8	J			472.5	J	2523.0	J
HED R	758.0	J			332.2	J	756.4	J
HED G	36.1	J			19.4	J	46.6	J
HED B	1692.8	J			120.9	J	1719.9	J
UV NF					121.2	J	1677.6	J
SP On Target			801.6	J)				
UV On Target	1545.3	J			110.4	J	1570.0	J

A similar diagnostic for OMEGA EP UV beams is in development.