noitislasticed noissiments bleing-sirded gnizitetostansh versenE iseenal-no entited isea one of the second s

J. KWIATKOWSKI, S. J. STAGNITTO, S. F. B. MORSE, M. LABUZETA, and V. GUILIANO **University of Rochester, Laboratory for Laser Energetics**

Summary

OMEGA now provides an estimate of on-target transmission losses resulting from target debris contamination of blast window assemblies

• Transmission of OMEGA debris shields is highly dependent on the type of experimental campaigns

- A laser-cleaning effect generally maintains individual beam transmission to ~90% of the "clean" blast-window-assembly (BWA) condition
- Blowthrough Omega Transport Imaging System (OTIS) measurements are used to monitor debris-shield transmission throughout the BWA cycle
- An energy report is now provided to the Principal Investigators (PI's) depicting estimated UV transmission losses
- Experiments with low debris impact are generally scheduled at the start of a BWA cycle, and high-impact shots precede refurbishment

Debris shields will be changed \sim 15 \times in FY12.

UV on-target energy is calculated based on an energy measurement made upstream of the target chamber

- A harmonic-energy detector (HED) measures on-shot UV along with residual IR and green
- HED is calibrated semi-annually (seven shots) and checked monthly (one shot) against a conventional calorimeter

OTIS is used to measure absolute UV transmission of all 60 Individual beams when new BWA's are installed (~monthly)

Target debris collects on the surface of the debris shield and reduces the UV on-target energy

*dpm: disintegrations per minute

- The BWA consists of a vacuum window and a debris shield
- Surface contamination often exceeds 10⁶ dpm*/100 cm²
- Processing of BWA's is labor intensive and requires
 - controlled surface contamination areas (CSCA) qualified radiation workers
 - hardware decontamination
 - recoating or replacing debris shield

"Mid-cycle" OTIS measurements of all 60 beams are now taken to understand debris-shield transport degredation after two weeks of target shots

- Overall system, as well as beam-to-beam, transmission can vary widely
- Historical HED report specifies UV on-target energy based on clean debris-shield transmission

UV transmission throughout each BWA cycle is highly campaign dependent

Log Nu 23-Feb	mber: 65145 -2012 19:57:16	U	V On-Target / BWA	Degradation Rep	ort		
Last B Report	WA swap before ed losses are	this shot: predicted f	02/05/2012 rom witness beam m	easurements tak	en on 02/22/2012	<pre># target shots since # target shots since</pre>	: 101 : 15
Non-SG	4 DPPs are not	beam speci	fic. Quoted transm	ussions are ave	rage for that DPP	type.	
	HED On-Target	Estimated		Estimated DPP	Adj. On-Target		
Beam	UV Energy	BWA Loss	DPP	Transmission	UV Energy		
		*******			************		
11	502.6	-0.6%	E-SG4-865	98.8%	493.6		
13	474.6	-0.9%	568	96.6%	454.1		
14	500.7	-1.0%	E-SG4-865	98.8%	489.8		
18	469.9	-1.6%	568	96.6%	446.5		
24	483.7	-1.5%	SG8	96.6%	460.2		
32	489.6	-0.9%	E-SG4-865	98.8%	479.5		
47	477.7	-1.0%	E-SG4-865	98.8%	467.1		
59	474.6	-1.1%	568	96.6%	453.2		
66	472.7	-0.7%	SG8	96.6%	453.4		
67	468.6	-1.6%	568	96.6%	445.3		
68	497.8	-0.9%	E-SG4-865	98,8%	487.4		
69	494.3	-1.4%	E-SG4-865	98.8%	481.6		
Mean	483.9	-1.1%			467.6		
RMS*	2.5	0.3%			3.6		
P/V%	7.0	1.0%			10.3		
	•	Estimat – SG – no	ed DPP trai 4 DPP trans n-SG4 DPP	nsmission smission 's are not	i is included is beam spe beam speci	d in this repor ecific ific; quoted	rt
		tra	nsmission	are the av	erage for th	at DPP type	
	•	This rep – Pl	oort is inclu Packet	ded in			
		– Sh	ot Images a	nd Repor	ts page		

OMEGA now provides an estimate of on-target transmission losses resulting from target debris contamination of blast window assemblies

• Transmission of OMEGA debris shields is highly dependent on the type of experimental campaigns

UR

- A laser-cleaning effect generally maintains individual beam transmission to ~90% of the "clean" blast-window-assembly (BWA) condition
- Blowthrough Omega Transport Imaging System (OTIS) measurements are used to monitor debris-shield transmission throughout the BWA cycle
- An energy report is now provided to the Principal Investigators (PI's) depicting estimated UV transmission losses
- Experiments with low debris impact are generally scheduled at the start of a BWA cycle, and high-impact shots precede refurbishment

Debris shields will be changed \sim 15 \times in FY12.

UV on-target energy is calculated based on an energy measurement made upstream of the target chamber

- A harmonic-energy detector (HED) measures on-shot UV along with residual IR and green
- HED is calibrated semi-annually (seven shots) and checked monthly (one shot) against a conventional calorimeter

OTIS is used to measure absolute UV transmission of all 60 Individual beams when new BWA's are installed (~monthly)

Target debris collects on the surface of the debris shield and reduces the UV on-target energy

- The BWA consists of a vacuum window and a debris shield
- Surface contamination often exceeds 10⁶ dpm*/100 cm²
- Processing of BWA's is labor intensive and requires
 - controlled surface contamination areas (CSCA)
 - qualified radiation workers
 - hardware decontamination
 - recoating or replacing debris shield

*dpm: disintegrations per minute

UR 🔌

"Mid-cycle" OTIS measurements of all 60 beams are now taken to understand debris-shield transport degredation after two weeks of target shots

Mid-cycle OTIS since October 2010

- Overall system, as well as beam-to-beam, transmission can vary widely
- Historical HED report specifies UV on-target energy based on clean debris-shield transmission

UV transmission throughout each BWA cycle is highly campaign dependent

November 2011 May 2011 0 -5 UV loss (%) -10 Benage- ABEX -15 Sangster- CRYO Sangster- CRYO Heeter- Mbop Sangster- CRYO Mancini- 3-D Core Li- PartStop Li- P_{probe} Merril- DD Comley- ShockLaue Loomis- CHaRM -20Loomis- Shear McNaney-TinMelt Smalyuk-Toto Casner- ImplDyn Sangster- CRYO **Drake- ExpAstro Theobald-AmbientBL Rygg/Smith-EOS Stoeckl- Preheat** Ma- BeXRTS -25**June 2011 July 2011** 0 -5 UV loss (%) -10 Marshall- PDD -15 Sangster- CRYO Sangster- CRYO Seka- 4 ω ISE **Kim-DTRat Ross- PbHohlraum Fiksel- Spherical RT** Froula- CBET -20**Theobald- Shocklgn** Ross- 4ω TS **Park- ColdPlasmas** Drake- RevRad Ping-Atwood 11b Smith- RampComp Cobble- PDD Smith- PhaseKin Smalyuk- KHInstability **Girard-NLTE** -25 Mid-**BWA** Mid-End of **BWA** End of cycle install install cycle cycle cycle

A "laser-cleaning effect" is observed after shooting the beam through a low-transmission debris shield

- High-loss beams generally recover up to ~90% of "clean" transmission after the beam is fired
- A majority of the laser-cleaning effect is realized after a single shot

Several factors contribute to the magnitude and distribution of debris-shield transmission degradation

- Target type and quantity
- Which beams are fired

(i.e., laser cleaning)

- Experiment geometry
- Beam location in target chamber

Daily "blowthrough OTIS" measurements are used to monitor debris-shield transmission degradation in a subset of beams

Blowthrough OTIS of two witness beam pairs is used to estimate individual transmission of all 60 beams

- Historical correlation of witness beam-pair blowthrough transmission is used to determine the overall system average
- Individual beam transmissions are calculated based on each beam's historical correlation to the system average
- Blowthrough OTIS predicts
 - 60-beam average transmission to ~1%
 - individual beam transmission for beams that are shot to <2% rms*

UR

Examples of blowthrough-estimated individual beam losses compared to actual OTIS measurements

Actual transmission measured by full OTIS run (%)

Operations now provides an HED report that estimates UV on-target energy as a function of beamline

									UR 🖋
Log Nu 23-Feb	mber: 65145 -2012 19:57:16	U	V On-Target / BWA	Degradation Rep	port				LLE
Last B	WA swap before	this shot:	02/05/2012			# target	shots since:	101	
Report	ed losses are	predicted f	rom witness beam m	easurements ta)	cen on 02/22/2012	# target	shots since:	15	
Non-SC	4 DPPs are not	beam speci	fic. Quoted transm	issions are ave	erage for that DP	P type.			
	HED On-Target	Estimated		Estimated DPP	Adj. On-Target				
Beam	UV Energy	BWA Loss	DPP	Transmission	UV Energy				
11	502.6	-0.6%	E-SG4-865	98.8%	493.6				
13	474.6	-0.9%	SG8	96.6%	454.1				
14	500.7	-1.0%	E-SG4-865	98.8%	489.8				
18	469.9	-1.6%	SG8	96.6%	446.5				
24	483.7	-1.5%	SG8	96.6%	460.2				
32	489.6	-0.9%	E-SG4-865	98.8%	479.5				
47	477.7	-1.0%	E-SG4-865	98.8%	467.1				
59	474.6	-1.1%	SG8	96.6%	453.2				
66	472.7	-0.7%	SG8	96.6%	453.4				
67	468.6	-1.6%	SG8	96.6%	445.3				
68	497.8	-0.9%	E-SG4-865	98.8%	487.4				
69	494.3	-1.4%	E-SG4-865	98.8%	481.6				
Mean	483.9	-1.1%			467.6				
RMS*	2.5	0.3%			3.6				
P/V%	7.0	1.0%			10.3				

- Estimated DPP transmission is included in this report
 - SG4 DPP transmission is beam specific
 - non-SG4 DPP's are not beam specific; quoted transmission are the average for that DPP type
- This report is included in
 - PI Packet
 - Shot Images and Reports page
 - OMEGA Data Viewer