Optical Diagnostic Suite (Schlieren, Interferometry, and Angular Filter Refractometry) on OMEGA EP Using a 10-ps, 263-nm Probe Beam

University of Rochester, Laboratory for Laser Energetics

Project Overview

A 4-kW probe laser and optical diagnostic suite is available on OMEGA EP.

- **Timing Diagnostic:**
 - A 10-ps, 26-mJ, 4-kW probe laser is implemented on OMEGA EP.
 - The system will initially be configured for:
 - coherent optical interferometry
 - angular filter refractometry (AFR)
 - The design presents options for expanded optical diagnostics.
 - Advanced optical diagnostics are being adapted to provide synthetic diagnostic images for experimental testing and analysis.

The three diagnostics coupled with detailed optical modeling will provide a novel diagnostic platform.

Scope of Diagnostics

The F4 collection system will provide <5 μm resolution over the 5-mm field of view (FOV).

- **Optical Diagnostic Suite**
 - Optical diagnostics will provide access to high-density laser-produced plasmas.
 - The three diagnostics coupled with detailed optical modeling will provide high-density laser-produced plasmas.

Angular Filter Refractometry

Angular filter refractometry maps the refraction of the probe beam at target chamber center to contours in the plasma image plane.

- The temporal evolution of the plasma density profile of UV-irradiated planar targets is illustrated using the angular filter refractometer.

Experimental Design Considerations

- **Interferometry** is limited to electron densities below 4×10^{20} cm$^{-3}$ in laser-produced plasmas.
- **Optical modeling** can be used to optimize experimental design and identify limitations.

Optical Modeling

Optical modeling provides the density measurements to 10^{21} cm$^{-3}$ in long-scale-length plasmas.