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Laser-driven magnetized liner inertial fusion (MagLIF) 
is being developed on OMEGA to study MagLIF scaling

Summary

E25032

•	 An energy-scaled point design for laser-driven MagLIF on OMEGA 
has been developed that is 10× smaller in linear dimensions than 
Z targets*

•	 The key elements of preheating to >100 eV and uniform cylindrical 
compression at ~100 km/s have been demonstrated in experiments

•	 A 3~ beam from P9 using Beam 35 is being implemented 
for preheating

•	 The first integrated laser-driven MagLIF experiment is scheduled 
for 19 July 2016
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*S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010);
M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014);
P. F. Schmit et al., Phys. Rev. Lett. 113, 155004 (2014).



Collaborators

D. H. Barnak, R. Betti, E. M. Campbell, P.-Y. Chang,1 G. Fiksel,2 
J. P. Knauer, and S. P. Regan

University of Rochester 
Laboratory for Laser Energetics

A. Harvey-Thompson, K. J. Peterson, A. B. Sefkow, 
D. B. Sinars, and S. A. Slutz

Sandia National Laboratories

3

1Currently at National Cheng Kung University, Taiwan
2Currently at University of Michigan



MagLIF is an inertial confinement fusion (ICF) scheme 
using magnetized preheated fuel to allow for cylindrical 
implosions with lower velocities and lower convergence 
ratios than conventional ICF*

I2185c
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•	 An axial magnetic field lowers electron thermal conductivity, allowing 
for a near-adiabatic compression at lower implosion velocities and 
confines alpha particles, allowing for a lower areal density 

•	 Laser preheating to ~100 eV makes it possible for >1 keV to be 
reached at a convergence ratio <30

*S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010).
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A point design for laser-driven MagLIF on OMEGA 
has been developed by scaling down the Z point design* 
by a factor of 1000 in drive energy

TC12449a

5

*S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010).
**MIFEDS: magneto-inertial fusion electrical discharge system
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Z 3.48 0.58 6 3 (DT) 30 250 70 25 8.0

OMEGA 0.30 0.03 10 2.4 (D2) 10 200 154 26 2.9



The first two shot days were supported by 
the Laboratory Basic Science (LBS) Program 
and Sandia National Laboratories (SNL)
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Foil transmission exceeds 50% with no backscatter from 
the gas and less than 10% sidescatter of transmitted light
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Backscatter from foils and from full targets are very similar 
and contain a negligible amount of the laser energy.
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Three-channel soft x-ray imaging of the side window 
shows a gas temperature of >100 eV
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According to 1-D models there is a preheat threshold of 100 eV.
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•	 SXR is not absolutely calibrated so it gives two channel ratios

•	 Used Spect3D to generate channel ratios for a range of gas and wall temperatures 
and densities (assumed uniform): four free parameters to fit the 2 channel ratios

•	 With the constraint Tgas > Twall, one can determine Tgas > 100 eV



X-ray emission recorded by Dante shows window, 
gas, and wall heating
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Two-dimensional hydrocode predictions are in 
reasonable agreement with Dante measurements
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Streaked optical pyrometry (SOP) of the cylinder surface 
demonstrates energy coupling to the central 0.8 mm
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The implosion of empty cylinders with rings 3 and 4 
was measured separately using x-ray framing cameras

E24974

12

z (cm)

–0.05 0.00 0.05

150

250

200

100

50

0

Intensity on target

Time (ns)

R
 (
n

m
)

1.51.0 2.0 2.5 3.0

600

500

400

300

Position of peak x-ray self-emission

Ring 3 only Ring 4 only

520!19 nm520!19 nm 312!11 nm312!11 nmVring3 = 124.3!4.0 km/s
Vring3 = 178.1!1.2 km/s

t = 2.55 ns
(end of laser pulse)

Overlap rings 3 at center and drive the ends with rings 4

L
as

er
 p

o
w

er
 (

T
W

/c
m

2 )

31.5°
8.75° Ring 3

Ring 4

Ring 3
Ring 4



E24975

13

1.	 Optimize ring-3 and ring-4 energy balance without preheat (1 Sept 15) 

2.	Complete optimization of ring-3 and ring-4 drive and reduce shell thickness 
without preheat  (24 Nov 15)

3.	Optimize preheat timing and vary preheat energy (19 July 16)

4.	Complete B/no-B and preheat level dataset (22 Sept 16)

5.	Measure axial B-field evolution 1: proton probing with D3He backlighter 
using H2 fill to avoid proton production from target

6.	Axial B-field evolution 2: use OMEGA EP if D3He is unsuccessful or extend dataset

7.	 Complete initial B-field scan including a higher value, if possible, with two MIFEDS 
and/or transformer coils (under development) with preheat

8.	Fill-density and shell-thickness scans with B and preheat

9.	Contingency: fill in missing data, address unforeseen issues, or extend dataset

A nine-shot day program is now being suported by the 
Advanced Research Projects Agency-Energy (ARPA-E)



Compression-only shots have shown that axial uniformity 
can be controlled by beam balance and a 0.7-mm-long 
region can be compressed at >100 km/s
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Hot-core formation and expansion have been observed 
with side-on x-ray framing cameras 
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Hot-core formation and expansion have been observed 
with side-on x-ray framing cameras 
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Hot-core formation and expansion have been observed 
with side-on x-ray framing cameras 

E24977a
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Hot-core formation and expansion have been observed 
with side-on x-ray framing cameras 
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End-on x-ray framing-camera images show core
emission earlier and a pentagonal structure to the shell

E24978
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End-on x-ray framing-camera images show core
emission earlier and a pentagonal structure to the shell
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End-on x-ray framing-camera images show core
emission earlier and a pentagonal structure to the shell
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End-on x-ray framing camera images show core
emission earlier and a pentagonal structure to the shell
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End-on x-ray framing-camera images show core
emission earlier and a pentagonal structure to the shell
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The pentagon corresponds to the azimuthal beam
distribution in ring 4 and can be removed by repointing

E24979

24

Standard beam
distribution

Uniform beam
distribution

Direct laser power
deposited (TW/cm2)

z (cm)

–0.1 0.0 0.1

0
100

200

300

0

100

200

300

A
zi

m
u

th
al

 a
n

g
le

 (
°) P laser

(direct)



A 3~ beam from P9 using Beam 35 is being 
implemented for preheating

E25033
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•	 Current P9 system provides 
2~ or 4~ using Beam 25

•	 2~ has too low a critical density; 
4~ has no diagnostics and no 
phase plate

•	 Beam 25 is required 
for compression

•	 A project to move Beam 35 
at 3~ into P9 is underway

•	 First use date is 19 July 2016

•	 Current capabilities 
will be maintained
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Laser-driven MagLIF would benefit considerably from
an increase in the field-generation capability on OMEGA
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OMEGA EP experiments investigate laser preheating 
at Z scale
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*A. J. Harvey-Thompson et al., Phys. Plasmas 22, 122708 (2015).
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NIF* experiments investigate laser preheating 
at ignition scale
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•	 C5H12 (warm), Bz = 0

•	 D2 (cryo), Bz = 0

•	 D2 (cryo), Bz = 20 to 30 T
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Scaling up the OMEGA laser-driven MagLIF point
design to NIF energies has been considered
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•	 NIF has 10× less drive energy than Z so would still give 
a smaller scale MagLIF target that could not achieve ignition

•	 EL = fEX, r = f1/3 rX, L = f1/3 rX, t = f1/3 rX, IL constant

•	 Consider f up to 100; approximately 1.6 MJ
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Laser-driven MagLIF on the NIF having a 30-T initial field
could achieve measurable magnetic confinement 
of fusion products

E25129
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*P. F. Schmit et al., Phys. Rev. Lett. 113, 155004 (2014).
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Summary/Conclusions

Laser-driven magnetized liner inertial fusion (MagLIF) 
is being developed on OMEGA to study MagLIF scaling

•	 An energy-scaled point design for laser-driven MagLIF on OMEGA 
has been developed that is 10× smaller in linear dimensions than 
Z targets*

•	 The key elements of preheating to >100 eV and uniform cylindrical 
compression at ~100 km/s have been demonstrated in experiments

•	 A 3~ beam from P9 using Beam 35 is being implemented 
for preheating

•	 The first integrated laser-driven MagLIF experiment is scheduled 
for 19 July 2016

*S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010);
M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014);
P. F. Schmit et al., Phys. Rev. Lett. 113, 155004 (2014).


