

UV Stray-Light Management on OMEGA EP

Long- pulse UV		Energy limits (J)							
On-target energy	Pulse length	Beam 1	Beam 2	Beam 3	Beam 4	Any beam with			
						1.1-mm DPP	2.0-mm DPP		
Square pulse- shape values	0.1 ns	100	100	100	100	100	70		
	1.0 ns	1250	1200	1250	1250	620	220		
	2.0 ns	1950	1700	2250	2200	880	310		
	2.5 ns	2200	1900	2500	2450	980	350		
	3.0 ns	2400	2100	2750	2700	1080	380		
	4.0 ns	2800	2400	3150	3100	1240	440		
	5.0 ns	3100	2700	3550	3450	1390	490		
	6.0 ns	3400	2950	3850	3800	1520	540		
	10.0 ns	4400	3800	5000	4900	1970	700		

UV transport mirrors began damaging at an increased rate mid-2014

- The final UV transport mirror UVHR2 showed the most damage
- Energy limits had not recently been increased

UVHR: UV high reflecter DPP: distributed phase plate FCC: frequency-conversion crystal

UR

Damage was caused by counter-propagating ghosts

- The damage region was traced to match the area illuminated by converging ghosts from surfaces in the focus lens, vacuum window, and debris shields
- The expected ghost intensity was well below that of the forward-going beam

DPP near-field amplitude modulation grows rapidly with propagation distance

- A converging beam exhibits effective propagation distances greater than the actual propagation distance as given by the Tanalov transformation
- $\mathbf{Z}' = \frac{\mathbf{Z}}{1 \frac{\mathbf{Z}}{f}}$
- DPP designs developed for use on OMEGA EP were not adequately analyzed for their modulation effect on system ghosts
- When modulation from a DPP is present, ghost peak fluence is significantly greater than that of the forward-going beam

DPP design variation strongly influences near-field modulation

Ghost intensity profile on UVHR2

- Although the 750- μ m DPP does not significantly increase the peak ghost fluence above that of the no-DPP case, the 1.1-mm and 2.0-mm DPP's produce much greater peak intensity
- The peak intensity of the 1.1-mm and 2.0-mm DPP's are ${\sim}5{\times}$ and 25 ${\times}$ that of the forward-going beam

Degradation of final-optic antireflective (AR) coating was a contributing factor that increased the rate of damage

- In an effort to reduce the ghost intensity, the AR coatings on debris shields, focus lenses, and vacuum windows were reapplied
- Ghost intensity at UVHR2 of the UV alignment laser was measured before and after the AR recoating were reapplied
- As a result ghost intensity was reduced by $\sim 10 \times$
- Debris shields are subject to the deposition of target materials and can exhibit significant increases in reflectivity to as high as 5% to 10%
- A program to monitor performance of and periodically replace AR coatings has been implemented

Debris-shield AR performance can degrade significantly over a relatively small number of shots.

Action was taken to protect downstream optics from modulation caused by damage on UVHR2

• Damaged UVHR2 mirrors were replaced to prevent downstream modulation from damaging DPP's, focus lenses, and vacuum windows

- Energy limits were significantly reduced when 1.1-mm and 2.0-mm DPP's were installed to prevent damage to new UVHR2 mirrors
- Other DPP's were not derated

Long- pulse UV		Energy limits (J)							
On-target energy	Pulse length	Beam 1	Beam 2	Beam 3	Beam 4	Any beam with			
						1.1-mm DPP	2.0-mm DPP		
Square pulse- shape values	0.1 ns	100	100	100	100	100	70		
	1.0 ns	1250	1200	1250	1250	620	220		
	2.0 ns	1950	1700	2250	2200	880	310		
	2.5 ns	2200	1900	2500	2450	980	350		
	3.0 ns	2400	2100	2750	2700	1080	380		
	4.0 ns	2800	2400	3150	3100	1240	440		
	5.0 ns	3100	2700	3550	3450	1390	490		
	6.0 ns	3400	2950	3850	3800	1520	540		
	10.0 ns	4400	3800	5000	4900	1970	700		

G10333

A small translation in position reduces peak fluence on UVHR2

UR

- The stacked bars represent the sum of fluence from multiple ghosts
- Equivalent propagation distance for DPP near-field modulation grows much faster than actual propagation distance in a converging beam resulting in significant changes in peak irradiance for small mirror translations

An 11-cm shift of the UVHR2 position has been implemented

- Translation was accomplished by spacing existing mechanics off of the support column
- The cost to implement was significantly less than that to acquire a new set of 1.1-mm DPP's
- A 15-mm shift could have restored the existing 2.0-mm DPP to near full energy but would have required significantly more mechanical work and was not cost-effective

G10335

DPP design can be optimized to reduce modulation at specified propagation distances

- New 1.8-mm DPP's are being procured to replace the current 2.0-mm DPP and will be able to operate at full rated energy
- Modulation at the new UVHR2 location was minimized as a design criteria

G10336

A first-order ghost from an imprinted DPP surface is tilted to leave the beam path

UR 🔌

- A 1.8° tilt ensures that the collimated ghost is out of the clear aperture prior to reaching the first transmissive optic, the UV diagnostic beam splitter (UVDBS)
- Removing collimated retro mitigates threat of small-scale self- focusing within the optic

Armoring is used in the IR/UV transport path to absorb collimated retroreflected light

UR 🔌

- Areas potentially illuminated by light retroreflected by frequencyconversion crystal (FCC) surfaces were armored to protect metal and painted surfaces
- FCC retroreflections were expected to be as high as 1%

Collimated retroreflected light from tilted DPP's was not adequately managed

- Modulation on retroreflections from DPP's increases local intensity to a fluence capable of ablating painted and bare-metal surfaces
- Debris from paint ablation can contaminate optic surfaces and lead to plasma scalding
- A project is underway to add armoring to illuminated structures and equipment

