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OMEGA Layered DT Cryogenic Implosions
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Hot-spot pressure is a key performance metric  
for layered DT cryogenic implosions on OMEGA*

Summary

E23981

•	 Cross-beam energy transfer (CBET) reduces the ablation pressure  
of direct-drive inertial confinement fusion (ICF) targets**

•	 A CBET mitigation campaign is underway on OMEGA

–	 Rbeam/Rtarget scan

–	 SG5 phase plates

–	 multipulse driver with dynamic bandwidth reduction

•	 PRELIMINARY: hot-spot pressure of 50 Gbar has been diagnosed 

–	 hot-spot size: 16-channel Kirkpatrick–Baez gated imager (KBframed) 

–	 neutron burnwidth:  P11 neutron temporal diagnostic  (P11-NTD)

An ignition-relevant hot-spot pressure of 100 Gbar will be pursued 
on OMEGA using beam zooming and multi-ablator targets.

	 *	V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014);
		 R. Nora et al., Phys. Plasmas 21, 056316 (2014);
		 C. Cerjan, P. T. Springer, and S. M. Sepke, Phys. Plasmas 20, 056319 (2013).
	**	I. V. Igumenshchev et al., Phys. Plasmas 17, 122708 (2010).
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OMEGA layered DT cryogenic implosions

E23982

•	 Theory

–	 CBET
–	 hot-spot pressure

•	 Experiment

–	 layered DT cryogenic targets
–	 laser
–	 diagnostics 

•	 CBET mitigation campaign 

–	 Rbeam/Rtarget scan

•	 Path to 100 Gbar

Outline



TC10248i

Theory

Direct-drive target performance is optimized by varying 
implosion velocity, in-flight aspect ratio (IFAR), 
fuel adiabat, and ablator material

•	 Vimp and IFAR are controlled  
by varying the ablator (7.5 to 
12 nm) and fuel thickness 
(40 to 66 nm)
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Incident intensity I14 (W/cm2)
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CBET* reduces the laser drive and ablation pressure 

*I. V. Igumenshchev et al., Phys. Plasmas 17, 122708 (2010).

Theory

CBET occurs during the main laser drive.
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Reducing the ratio of Rbeam/Rtarget is a proposed CBET 
mitigation technique

*I. V. Igumenshchev et al., Phys. Plasmas 17, 122708 (2010).

Theory



Hot-spot pressure is the key ignition parameter*
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Theory

	*V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).

Outgoing
shock

Unshocked
shell

Hot spot

10
0 0

20

40

60

80

100

120

50

100

150

200

250

20 30

Radius (nm)

Stagnation

D
en

si
ty

 (
g

/c
m

3 )

P
re

ss
u

re
 (

G
b

ar
)

40 50

Shocked
shell (Ms)

. /g cm keVR T 0 35 5
hs i

2# #2t^ h

Gbar
m

P R100
100

hs
hs

2
ne o

Gbar kJP
f E

250 10

– /

hs
k k

1 2
2 c m

. mP T2 2 5DT pt=

, ~f E p R f M M2k k hs hs k s
3r=

Hot-spot ignition condition

Shocked 
shell
fraction

Hot-spot 
energy



Less hot-spot pressure is required to ignite a design 
with larger shell kinetic energy
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Theory
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Hot-spot pressure is inferred from the measured  
hot-spot size, burnwidth, GTiH, and neutron yield

E23985

Theory

Current OMEGA cryogenic implosions reach ~0.44 of the hot-spot 
pressure required for ignition (without CBET) and ~0.35 with CBET.
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OMEGA layered DT cryogenic implosions
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•	 Theory

–	 CBET
–	 hot-spot pressure

•	 Experiment

–	 layered DT cryogenic targets
–	 laser
–	 diagnostics 

•	 CBET mitigation campaign 

–	 Rbeam/Rtarget scan

•	 Path to 100 Gbar

Outline



The new Isotope Separator System (ISS)*  
provides high-purity (99.7%) T2 fuel

E23693b

•	 12 mCi released out of 8500 Ci
	 processed in September 2014

•	 Before: T:D:H was 34%:60%: 5% (estimated)

•	 After: T:D:H is 60:40: <0.1% (estimated)

*Developed jointly with Savannah River National Laboratory.

The 60:40 T:D ratio was chosen to provide a 50:50 mixture 
in the gas phase (fractionation) of a layered capsule.

Tritium Fuel Supply



Layered DT cryogenic targets are produced routinely 
with 1-nm rms layer smoothness
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Layered DT Cryogenic Targets

3-D target metrology analysis  
Thickness: 53.5 nm
rms: 0.92 nm
Measured diameter: 910.2 nm
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Thin Au overcoat layers have been shown to reduce 
laser imprint*

E23987

Layered DT Cryogenic Targets

	 *	S. P. Obenschain et al., Phys. Plasmas 9, 2234 (2002).
	 **	G. Fiksel, Laboratory for Laser Energetics, private communication (2015).

Thin Au overcoat layers are being studied with layered DT cryogenic 
targets to mitigate laser imprint and the effects of target surface debris.
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A new set of phase plates designed to improve  
on-target drive uniformity and reduce CBET is used 

E23691b
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The multipulse driver (MPD) with dynamic bandwidth 
reduction (DBR) provides more laser energy on target 

E23690a

•	 Front-end modifications have been made to co-propagate  
two separate pulse shapes in all 60 OMEGA beams

•	 2-D smoothing by spectral dispersion (SSD) can be applied  
to either one of the two pulse shapes

•	 DBR applies SSD to only the pickets and provides 
increased drive energy
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A new neutron temporal diagnostic (P11-NTD) provides  
an accurate measurement of the neutron burnwidth

E23692a 

The CryoNTD is located in P11
with optical transport to a streak
camera in the OMEGA EP plenum

(Signal to background ~ 200)

The estimated impulse response
is ~50 ps, adequate for

50- to 60-Gbar pressures and widths
of 70 to 90 ps
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P11-NTD has an impulse response of ~40±10 ps  
and an absolute timing calibration of 50 ps

E23988

OMEGA Diagnostics

•	The impulse response was measured using 10-ps OMEGA EP pulses

•	Assuming a width of the x-ray signal of ~30±10 ps, the impulse 
response of P11-NTD deconvolves to ~40±10 ps 

•	P11-NTD is calibrated against NTD and has the same absolute timing 
accuracy of 50 ps
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The tR is diagnosed using the downscattered neutrons 
in the 3.5- to 6-MeV range recorded with a neutron  
time-of-flight detector (nTOF)*

E23989

OMEGA Diagnostics

*C. J. Forrest et al., Rev. Sci. Instrum. 83, 10D919 (2012).
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The tR is diagnosed using the downscattered neutrons 
in the 10- to 12-MeV range with the magnetic recoil 
spectrometer (MRS)*

E23990

OMEGA Diagnostics
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Gate width: ~30 ps
Image to image: 15 to 60 ps 
Spatial resolution: ~5 nm
Energy range: 1.5 to 8 keV

Framing
camera

OMEGA Kirkpatrick–Baez (KB)
microscope chassis
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The gated monochromatic 
x-ray imager (GMXI) provides a 
time-integrated KB image today

A framed, 16-channel Kirkpatrick–Baez imager provides 
time-resolved images of the core around stagnation
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OMEGA Diagnostics



KBframed optic magnification and framed resolution  
have been measured using an x-ray backlit grid on OMEGA

E23991

OMEGA Diagnostics
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OMEGA layered DT cryogenic implosions
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•	 Theory

–	 CBET
–	 hot-spot pressure

•	 Experiment

–	 layered DT cryogenic targets
–	 laser
–	 diagnostics 

•	 CBET mitigation campaign 

–	 Rbeam/Rtarget scan

•	 Path to 100 Gbar

Outline



The effects of CBET and two-plasmon decay (TPD)  
on target performance were studied by varying  
Rbeam/Rtarget and keeping IFAR and adiabat constant   

E23992

The calculated implosion velocity was 3.6 × 107 cm/s for all shots  
except the one with Rbeam/Rtarget = 0.85 and SSD (3.3 × 107 cm/s).
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Energy coupling to the shell is diagnosed using  
gated x-ray imaging of coronal plasma

E24015

Vimp, theory = 3.5 × 107 cm/s for both designs
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The CBET model is in reasonable 
agreement with measurements.

D. T. Michel et al., Phys. Rev. Lett. 114 155002 (2015).
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The neutron yield over clean (YOC) increases  
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Similar YOC was observed for implosions having either DBR  
or 2-D SSD $ more UVOT* with DBR (29 kJ versus 26 kJ).

*Unsheared ultraviolet laser energy on target
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The ion temperature is inferred  
from the nTOF diagnostic
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The lowest Ti is used to infer the hot-spot pressure for each implosion.



The measured neutron burnwidth is comparable to  
the 1-D prediction for the higher-adiabat implosions   

X-ray burnwidth (ps)
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The measured neutron burnwidth is consistent 
with the measured x-ray burnwidth.



The MRS infers a slightly lower tR than the nTOF

E23996

The comparison is sensitive to spatial variations of 
tR since each diagnostic has a different line of sight.
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tROC weakly depends on Rbeam/Rtarget
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Better peformance is observed for the higher-adiabat implosions.



KBframed records an image (Dt = 30 ps)  
of the stagnating core every ~15 ps  
in the 4- to 8-keV photon energy range
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The hot-spot radius decreases with increasing  
Rbeam/Rtarget and is comparable to the 1-D prediction 
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The measured tR is consistent with the hot-spot  
size inferred from x-ray imaging
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Rbeam/Rtarget
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DT cryogenic implosions on OMEGA
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The results are preliminary.



Simulations indicate the target performance  
of the larger targets is degraded by the enhanced  
long-wavelength nonuniformity
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OMEGA layered DT cryogenic implosions

E23982c

•	 Theory

–	 CBET
–	 hot-spot pressure

•	 Experiment

–	 layered DT cryogenic targets
–	 laser
–	 diagnostics 

•	 CBET mitigation campaign 

–	 Rbeam/Rtarget scan

•	 Path to 100 Gbar

Outline



Multilayer ablators and zooming are planned to increase 
the hot-spot pressure to 100 Gbar*

E24002 	 *	V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).

Multilayer ablators and zooming are designed to increase 
energy coupling, and reduce preheat and laser imprint.
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A zooming phase plate (ZPP) is being developed  
to provide co-axial zooming on OMEGA

E22039f
D. H. Froula et al., Phys. Plasmas 20, 082704 (2013).
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The picket portion of the laser pulse has a larger 
spot size on target compared to the main drive.

Near-Term Plan



Long-Term Plan
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More laser energy can be coupled to the target with  
full-aperture zooming compared to co-axial zooming

E22928f

•	 Limited energy 
(21 kJ)

•	 Reduced 
smoothing

•	 Full energy  
(28 kJ)

•	 Enhanced 
smoothing

The concept for full-aperture 
zooming on OMEGA is under 
development.



Hot-spot pressure is a key performance metric  
for layered DT cryogenic implosions on OMEGA*

E23981

Summary/Conclusions

•	 Cross-beam energy transfer (CBET) reduces the ablation pressure  
of direct-drive inertial confinement fusion (ICF) targets**

•	 A CBET mitigation campaign is underway on OMEGA

–	 Rbeam/Rtarget scan

–	 SG5 phase plates

–	 multipulse driver with dynamic bandwidth reduction

•	 PRELIMINARY: hot-spot pressure of 50 Gbar has been diagnosed 

–	 hot-spot size: 16-channel Kirkpatrick–Baez gated imager (KBframed) 

–	 neutron burnwidth:  P11 neutron temporal diagnostic  (P11-NTD)

An ignition-relevant hot-spot pressure of 100 Gbar will be pursued 
on OMEGA using beam zooming and multi-ablator targets.

	 *	V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014);
		 R. Nora et al., Phys. Plasmas 21, 056316 (2014);
		 C. Cerjan, P. T. Springer, and S. M. Sepke, Phys. Plasmas 20, 056319 (2013).
	**	I. V. Igumenshchev et al., Phys. Plasmas 17, 122708 (2010).


