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Optical Probing Measurements on OMEGA EP

Time: 69 ps
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The fourth-harmonic (263-nm) probe diagnostic system 
provides an opportunity to study the plasma conditions 
for a variety of high-energy-density (HED) and basic 
physics studies

Summary

•	 The	4~ diagnostic system was activated near the beginning of 2013 
on the OMEGA EP Laser System

•	 A	novel	diagnostic,	angular	filter	refractometry	(AFR), was developed 
to	study	plasma	density	profiles	up	to	1021 cm–3 (UV-irradiated targets 
and short-pulse channeling)

•	 Polarimetry	has	been	recently	activated	to	measure	laser-generated	
magnetic	fields	(magnetized ICF and short-pulse magnetic reconnection) 

•	 Interferometry	is	at	the	conceptual	stage	to	extend	the	low	end	of	the	
measurement	range	for	plasma	density	profiles
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Outline

•	 4~ diagnostic overview

•	 Plasma	density	profile

•	 Laser-generated	magnetic	fields

•	 Ongoing	work



• ±50-ps accuracy (pre-shot)
• ±20-ps post-shot measurement

• 4~ (263 nm) ~20 mJ
• Pulse width = 10 ps

• 5-nm resolution
• 3.7 × 3.7-mm
 field of view
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• f/25 diverging beam
• Diameter = 3.3 mm

Target chamber center
illumination

Diagnostic table

Timing

Nd:glass laser

The OMEGA EP 4~ probe laser system delivers a high- 
quality	beam	at	target	chamber	center	(TCC) that is 
collected at f/4 to access high plasma densities
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A wire mesh at TCC demonstrates 5-nm imaging 
resolution	over	a	3-mm	field	of	view	(FOV)
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The rising edge (10% to 90%) of a shadow occurs 
over	2	pixels,	resulting	in	~5-nm point-spread 
function. (f/4 diffraction limit: 1.3 nm)
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The optical transport is designed to deliver 
an “abberation-free” collimated beam to feed 
multiple diagnostics
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The	first	set	of	experiments	using	the	4~ probe laser 
system	were	aimed	at	measuring	the	plasma	density	profile	
in the UV-driven corona

Outline
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Coronal plasma density measurements are important 
to accurately predict the laser–plama interaction.
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Experiments	were	designed	to	isolate	the	dependence	
of laser–plasma instabilities (LPI’s) on the plasma scale 
length by using targets of varying radii
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Over	the	range	of	experiments,	the	
quarter-critical	density	scale	length	was	
varied by more than a factor of 3.
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The 4~ probe beam propagates transverse 
to the laser–plasma interaction (LPI)

351-nm,	2-ns	square,	9-kJ,	1-mm	spot	(DPP*)

4~ probe
beam

Four UV 
laser beams

CH foil

ŷ
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Image
planeTCC

object plane

Foil target

Foil target

Fourier
plane

AFR measures the refraction of the probe beam passing 
through an object at TCC
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Fourier
plane Image

planeTCC
object plane

Foil target

Foil target
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AFR maps refraction of the probe beam 
at TCC to contours in the image plane.

AFR measures the refraction of the probe beam passing 
through an object at TCC
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The diagnostic is calibrated using a negative lens 
that	has	a	well-defined	i (x, y)

The	association	of	these	angles	with	the	specific	angular	filter	bands	
can	be	applied	to	a	plasma	to	measure	its	refraction	profile.
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The	experimental	AFR	images	are	analyzed	using 
the calibration angles

Processing	the	experimental	angular	refactometry	images	
creates a contour map of the refraction angle.
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The	plasma	density	profile	can	be	determined	 
from the refractive contour map
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The	plasma	expansion	from	UV-irradiated	spheres	of	
varying radii was studied using the AFR diagnostic

Increasing diameter
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The	measured	density	profiles	were	compared 
to DRACO 2-D hydrodynamic simulations run with 
a	flux	limiter	of	0.06
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Hydrodynamic simulations are in good agreement with
the measurements for small spheres (short scale lengths).
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As the target diameter is increased, the hydrodynamic
simulations predict higher densities and longer scale 
lengths compared to measurements
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Three parameter scans link the discrepancy 
to longer plasma scale lengths

E23054

•	 Shell	radius	(probe at 1.5 ns)

– key parameter: scale length

– result: agreement at small scale lengths, disagreement 
at large scale lengths

•	 Probe	timing	on	flat	foil

– key parameter: scale length

– result: agreement at small scale lengths, disagreement 
at large scale lengths

•	 Laser	intensity	(probe at 1.5 ns)

– key parameter: laser intensity

– scale length remains relatively constant

– result: disagreement across all shots

The results seem to indicate the discrepancy is not LPI driven 
but an issue in DRACO (i.e., lateral heat transport*).

*D. Ress et al., Phys. Fluids B 2, 2448 (1990).



Imaging	of	coronal	plasma	density	profiles	up	to	1021 cm–3 
(ncr for 1 nm)	was	integral	for	channeling	experiments

•	 4~ diagnostic overview

•	 Plasma	density	profile

– coronal plasma 
expansion

– short-pulse 
channeling

•	 Laser-generated 
magnetic	fields

•	 Ongoing	work
•	 Guiding	of	intense	laser	pulses1

•	 Density	profile	modification
•		 High	harmonic	generation2

•		 Electron	transport	in	HED	plasma
•		 Pumping	of	x-ray	recombination	laser3

•		 Laser	acceleration	of	light	ions,	electrons4

Channel

Fpond UV
blowoff

Backlighter

1C. G. Durfee and H. M. Milchberg, Phys. Rev. Lett. 71, 2409 (1993).
2X. F. Li et al., Phys. Rev. A 39, 5751 (1989).
3N. H. Burnett and P. B. Corkum, J. Opt. Soc. Am. B 6, 1195 (1989).
4T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979).
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The AFR diagnostic images the channel, offering 
information	on	the	shape	and	density	modification
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The short duration of the 4~ probe pulse allows for 
picosecond resolution of the channel dynamics
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Shadowgraphy images the channel walls, showing a 
very sharp rise near the resolution limit of the diagnostic

E22874 Courtesy of S. Ivancic

1.0

0.8

0.6

0.4

0.2

0.0
0 20 40 60 80 100 120

x axis (nm)

N
o

rm
al

iz
ed

 s
ig

n
al

1.0

1.5

0.5

0.0

–1 10
x axis (nm)

y 
ax

is
 (

m
m

)

Shadowgraph Average lineout

~12 nm



The 4~ probe has enhanced the imaging capabilities 
on OMEGA EP in underdense plasmas
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The 4~ probe and proton radiography can be used simultaneously 
to image electron densities and magnetic/electric	fields.
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The polarimetry arm of the 4~ diagnostic was activated 
to	measure	magnetic	fields

•	 4~ diagnostic overview

•	 Plasma	density	profile

•	 Laser-generated 
magnetic	fields

– magnetized ICF

– short-pulse– 
driven magnetic 
reconnection

•	 Ongoing	work

•	 Magnetized	hohlraum	to	reduce 
laser–plasma instabilities

– reduced wall blow- in leads to lower 
gas pressure

– reduced thermal transport leads 
to higher electron temperature

HohlraumCurrent

Lasers

*

*Courtesy of J. Moody

Outline
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Magnetic	fields	are	measured	by	detecting	a	rotation	in	
the polarization of the 4~ probe beam (Faraday rotation)
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The system can currently measure 0.1° rotations.
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Experiments	were	performed	to	measure	magnetic	fields	
generated by a solenoid driven with the OMEGA EP 
UV laser
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Magnetic	fields	up	to	4	T	were	measured	on	the	inner	
piece of glass for a laser energy of 50 J per beam
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Laser
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2.4 T 3.9 T

Courtesy of J. Moody

Time scaling at 50 J suggests >100-T	fields 
are produced at 1.5 ns for 500 J.



Collisionless magnetic reconnection as a source of 
energetic particles is a topic of interest in astrophysics, 
although the mechanism is unknown

E22888

*M. Øieroset et al., Nature 412, 414 (2001).
Courtesy of A. Davies

Outline

•	 4~ diagnostic overview

•	 Plasma	density	profile

•	 Laser-generated 
magnetic	fields

– magnetized ICF

– short-pulse–
driven magnetic 
reconnection

•	 Ongoing	work
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Over 2014 there are 14 shot days (8	external) using the 4~ 
probe with plans for a new diagnostic, advanced simulation 
tools,	and	new	experiments
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•	 4~ diagnostic overview

•	 Plasma	density	profile

•	 Laser-generated 
magnetic	fields

•	 Ongoing	work

– interferometry for measuring 
low-density plasmas

– MATLAB analysis package 
for AFR images

–	 new	experiment:	magnetized	
liner inertial fusion

CH

CH

UV drive

UV drive

Collisionless shocks
magnetic reconnection

Outline



 A full-aperture interferometer could be built to access 
low-density plasmas
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Simulated interferograms generated using model plasma 
profiles	show	significant	fringe	shifts	in	the	plasma	area 
of interest

E22844

–2

–1

0

0–1 1

1

x axis (mm) x axis (mm)

y 
ax

is
 (

m
m

)

0.15
–0.1 0.0 0.1

0.10

0.05

0.00

–0.05

–0.10

–0.15

Colloidal plasmas
FHWMy = 2.6 mm
FHWMz = 800 nm

Lx = 400 nm

Short-pulse plasmas
FHWMy = 70 nm
FHWMz = 70 nm

Lx = 25 nm



A	powerful	tool	uses	Fourier	optics	to	quickly 
create synthetic AFR images for comparison 
to	experimental	images

E22845 Courtesy of S. Ivancic
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New	experiment:	Aspects	of	magnetized	liner	inertial	
fusion can be studied on OMEGA EP utilizing the 4~ 
probe diagnostic

E22846

•	 5	atm	of	D2 gas

•	 Magneto-inertial	fusion	
electrical discharge system 
(MIFEDS)	to	provide	axial	
magnetic	field

•	 AFR	to	measure	plasma	
density	and	extent

•	 Shadowgraphy	to	show	fine-	
scale	laser	filamentation

Metal liner
Laser
beam

Initial axial
magnetic field

Laser-preheated
fuel

Azimuthal
field lines
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•	 How	does	a	high-energy	laser	deposit	energy 
in an underdense D2 gas?

•	 How	does	magnetization	affect	the	dynamics?



Summary/ConclusionsSummary
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The fourth-harmonic (263-nm) probe diagnostic system 
provides an opportunity to study the plasma conditions 
for a variety of high-energy-density (HED) and basic 
physics studies

•	 The	4~ diagnostic system was activated near the beginning of 2013 
on the OMEGA EP Laser System

•	 A	novel	diagnostic,	angular	filter	refractometry	(AFR), was developed 
to	study	plasma	density	profiles	up	to	1021 cm–3 (UV-irradiated targets 
and short-pulse channeling)

•	 Polarimetry	has	been	recently	activated	to	measure	laser-generated	
magnetic	fields	(magnetized ICF and short-pulse magnetic reconnection) 

•	 Interferometry	is	at	the	conceptual	stage	to	extend	the	low	end	of	the	
measurement	range	for	plasma	density	profiles



Interferometry of long-scale-length plasmas
Ln = 400 nm ; FHWM = 1 mm

E22851

Refraction

–1000

0

1000

y 
ax

is
 (
n

m
)

6

8

4

2

0

–1000 0 1000

–1000

0

1000

y 
ax

is
 (
n

m
)

x axis (nm)

3

4 4

2

1

0

Phase

1200

800

400

0

–1000 0 1000
x axis (nm)

3

2

1

0


