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TCC illumination
f/25 diverging beam

Eighth-order
super-Gaussian

Diameter = 3.3 mm

Laser
Nd:glass ~120 mJ

4~ light ~20 mJ (10 ps)

Diagnostic table
5-nm resolution

3.7 × 3.7-mm field of view



Summary

The 4~ diagnostic on OMEGA EP has been activated 
and is ready for use by external users
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•	 A 10-ps, 20-mJ, 4~ probe laser is installed and in use on the OMEGA EP 
target chamber

•	 An f/4 system provides access to high-density, large-scale-length 
	 laser-produced plasmas

•	 The system was designed for advanced optical diagnostics

		  – refractometry using angular spectral filters (ASF) (in use)

	 	 – schlieren and shadowgraphy (in use)

	 	 – grid-imaging refractometry (future)

		  – interferometry (future)

		  – polarimetry (future)

•	 Advanced optical design tools are being developed to provide synthetic 
diagnostic images for experimental setup and analysis

The diagnostics coupled with detailed optical modeling of the system 
provide a novel diagnostic platform for detailed plasma measurements.
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IR Transport

Port 71

• !25-ps accuracy
Timing

• !5-ps post-shot measurement
• Picosecond accuracy costs 
  one shot per day

Nd:glass laser

1~ (1053 nm) ~ 120 mJ

2~ (526 nm) ~ 60 mJ

4~ (263 nm) ~ 20 mJ

Pulse width = 10 ps

The 4~ probe beam is generated by converting 
an Nd:glass laser pulse to its fourth harmonic 
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The 4~ probe laser system delivers a 3.3-mm spot to 
target chamber center in a super-Gaussian beam shape
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•	 Eighth-order super-Gaussian beam shape

•	 System can be focused at target 
	 chamber center (TCC)

•	 Enters from Port 71 chamber west
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The propagation vector through the target 
chamber is orthogonal to the backlighter and 
centroid of UV beams
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The 4~ probe beam is available in VisRad and propagates 1 mm north 
(toward Port 45) of the TCC. Please contact Dan Haberberger or Dustin 
Froula for help with planning experiments.

i = 90°

i = 120°



The f/4 collection optics deliver a diffraction- 
limited image accessing plasma densities 
near quarter critical for 3~ light
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f/4 catadioptric collection system
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= 1~
= 3~

= 4~

The catadioptric collection and five-element collimator 
provide quasi-achromatic colimation across 1~, 3~, 
and 4~ for efficient filtering
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The collimated section provides excellent bandpass rejection to overcome 
1~ and 3~ drive laser emission (10,000:1 outside 2-nm bandpass.)



A wire mesh at TCC demonstrates 5-nm imaging 
resolution over a 3-mm field of view
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The rising edge (10% to 90%) of a shadow occurs 
over 2 pixels resulting in ~5-nm point spread function. 
(f/4 diffraction limit: 1.3 nm)
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The optical transport is designed to deliver 
an “aberration-free” collimated beam to feed 
multiple diagnostics
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The 55-sq.-ft. diagnostic table provides space for diagnostic expansion. 

ASF/schlieren/shadowgraphy M = 7, field of view (FOV) = 3.7 mm

Image plane

Image plane

25 mm

ASF/schlieren stop

Grid imaging
refactometry

Interferometry

Future user defined M = 15, FOV = 1.8 mm

Wollaston prism

M = 2, FOV = 5 mm



Gaussian Plasma Column
FWHM = 0.2 mm

ne,0 = 2.0 × 1020 cm–3

Gaussian Plasma Column
FWHM = 0.2 mm

ne,0 = 8.0 × 1020 cm–3

Detector Detector
4~

light

Distance (pixels)
Danger zone:

close to the sampling limit!
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Interferometry measures the plasma-density profile 
up to the resolution limit of the fringes
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•	 Short-pulse plasmas having a 
FWHM ~200 nm are limited 

	 to densities <1021 cm–3

•	 UV long-pulse plasmas having 
FWHM ~1 mm are limited to 
densities ≤1020 cm–3

Courtesy of N. Kugland, H-S. Park
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Grid-imaging refractometry (GIR) measures the refraction 
of beamlets at three locations within the plasma
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•	 GIR extends the density measurements 
to 1021 cm–3 in long-scale-length 
plasmas

•	 Three longitudinal objects in the 
plasma are imaged to a single 

	 charge-coupled device (CCD)

•	 The system is designed to have <50-nm 
resolution over a 5-mm field of view

•	 Magnification of 2

*R. S. Craxton et al., Phys. Fluids B 5, 4419 (1993).



Polarimetry can be used to measure externally 
and laser-generated magnetic fields
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•	We would like input from the community on the 
requirements for polarimetry.

•	The sensitivity to the polarization rotation angle 
of the 4~ probe beam is under investigation.
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Refractometry using angular spectral filters (ASF’s) 
maps the refraction of the beam at TCC to contours 
in the image plane
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•	 Refraction angle is mapped to space in the probe beam’s 
Fourier plane

•	 A mask at the Fourier plane selectively filters certain 
k-space components of the refracted beam

•	 The beam returns to the image plane, which now maps 
refractive angle to real space
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Using a bullseye ASF creates a contour map 
of refractive angle
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The edges of the rings represent contours 
of constant refraction at a specific angle.

Fourier
planeTCC

object plane
Magnified

image
plane

xt
kx
t

xt



This concept is demonstrated experimentally by 
placing a negative lens at TCC
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The ASF calibration lens image maps a specific 
refractive angle to each band in the filter.

Negative spherical
lens at TCC
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Negative cylindrical
lens at TCC
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To further illustrate the refraction mapping, a cylindrical 
lens was used to refract the probe beam in the 
vertical direction

E21941a

The ASF calibration lens image maps a specific 
refractive angle to each band in the filter.



The diagnostic is calibrated using the negative 
spherical lens

E21942b

Image plane using
a spherical lens
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4~

Shot: 13876
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The scale length of the plasma can be analytically 
deduced assuming a simple density profile
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Spherical targets were used to vary the plasma 
density scale length
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800-nm CH sphere 8-mm CH Sphere

Shot 14467Shot 14462
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The plasma density profile can be calculated 
by Abel inversion of the phase
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The radial lines of phase are interpolated over all pixels 
of the 2D map to prepare for Abel inversion
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The assumption of straight propagating of the probe ray plus 
other numerical errors motivate an accurate simulation model.
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Optical modeling in FRED supports the analysis 
of the 4~ probe diagnostic system
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Target
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center

Plasma

Refractometry
diagnostic

arm

Courtesy of S. Ivancic



The optical model is calibrated by matching the position 
of the Fourier plane, image plane, and magnification
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The calibration lens images produced by the optical model 
agree with the experimentally obtained images.  
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FRED was used to model a UV-irradiated flat foil plasma 
expansion simulated by DRACO
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•	 A 3-D plasma profile was 
created in FRED from the 
2-D DRACO profile assuming 
axial symmetry

•	 Ray tracing through 
the plasma (and the 4~ 
diagnostic model) produced 
the ASF image
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The contours of the simulated ASF image are compared 
to the experimental image
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An iterative method of changing density profile to match the simulated 
image to the experimental image is under development.
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FRED was used to model sharp density gradients 
produced by the channeling of a high-power 
picosecond beam

E21948 Courtesy of S. Ivanic

The channel is characterized by matching the penetration depth, 
scale length, and residual plasma density in the channel.
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The 4~ diagnostic on OMEGA EP has been activated 
and is ready for use by external users
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•	 A 10-ps, 20-mJ, 4~ probe laser is installed and in use on the OMEGA EP 
target chamber

•	 An f/4 system provides access to high-density, large-scale-length 
	 laser-produced plasmas

•	 The system was designed for advanced optical diagnostics

		  – refractometry using angular spectral filters (ASF) (in use)

	 	 – schlieren and shadowgraphy (in use)

		  – grid imaging refractometry (future)

		  – interferometry (future)

		  – polarimetry (future)

•	 Advanced optical design tools are being developed to provide synthetic 
diagnostic images for experimental setup and analysis

The diagnostics coupled with detailed optical modeling of the system 
provide a novel diagnostic platform for detailed plasma measurements.

Summary/Conclusions


