Recent Progress in Omega Cryogenic Implosions

V. N. Goncharov University of Rochester Laboratory for Laser Energetics Omega Laser Facility Users' Group Workshop Rochester, NY 24 April 2013

Summary

Both target yields and neutron-averaged ion temperatures have improved by increasing V_{imp} from 3.0 to 3.8 × 10⁷ cm/s

- The implosion velocity was increased in cryogenic targets on OMEGA over the last year by reducing the fuel mass
- Yields in excess of 2 \times 10¹³ and ion temperatures up to 3.2 keV were measured in cryogenic implosions with V_{imp} ~ 3.8 \times 10⁷ cm/s

UR 🔌

- Areal densities above 80% of 1-D predictions were measured in implosions with fuel adiabat (α) exceeding 3(IFAR/20)^{1.2}, where IFAR is the shell in-flight aspect ratio
- Shell performance is currently limited by local defect growth

Target performance is optimized by varying implosion velocity, IFAR, fuel adiabat, and ablator material

- V_{imp} and IFAR are controlled by varying ablator (9 to 12 μ m) and fuel thickness (40 to 66 μ m)
- The effect of imprint is varied by introducing Si-doped layers

Both target yields and neutron-averaged ion temperatures increase with the implosion velocity

The OMEGA experimental yield scales as V_{imp}^5

Yield degradation is a strong function of fuel adiabat

Areal density is degraded for α < 2.5 and IFAR > 22

UR 👐

An enhanced core emission for low-adiabat implosions suggests ablator mix into the hot spot

Cross-beam energy transfer (CBET) reduces laser coupling

LL

As a result of reduced coupling, the ablation pressure is lower

A new design with a reduced CBET effect has a three-layer ablator

Electron temperature in the corona is higher in the "multilayer" design

Summary/Conclusions

Both target yields and neutron-averaged ion temperatures have improved by increasing V_{imp} from 3.0 to 3.8 × 10⁷ cm/s

- The implosion velocity was increased in cryogenic targets on OMEGA over the last year by reducing the fuel mass
- Yields in excess of 2 \times 10¹³ and ion temperatures up to 3.2 keV were measured in cryogenic implosions with V_{imp} ~ 3.8 \times 10⁷ cm/s

- Areal densities above 80% of 1-D predictions were measured in implosions with fuel adiabat (α) exceeding 3(IFAR/20)^{1.2}, where IFAR is the shell in-flight aspect ratio
- Shell performance is currently limited by local defect growth