An ultra-low-yield charged particle spectrometer for studying nucleosynthesis reactions in OMEGA implosions

Alex Zylstra **OLUG 2012** Rochester, NY Apr 26, 2012 **Compact magnetic spectrometer** 30 cm Dipole 10 cm Quadrupoles

Motivation: Several reactions relevant to stellar nucleosynthesis and basic nuclear physics can be studied at ICF facilities using charged particles.

- T+T → 2n + α, T+T → n + ⁵He, T+T → n + ⁵He*, T+T → (nn) + ⁴He
 TPIE, CPS can measure spectra at high T_i (≥4 keV)
 Compact spectrometer would allow measurements at 2-3 keV
 - extend CM energy range of measurements
- 2. ${}^{3}\text{He} + {}^{3}\text{He} \rightarrow 2p + \alpha$, ${}^{3}\text{He} + {}^{3}\text{He} \rightarrow p + {}^{5}\text{Li}$, ${}^{3}\text{He} + {}^{3}\text{He} \rightarrow p + {}^{5}\text{Li}^{*}$, ${}^{3}\text{He} + {}^{3}\text{He} \rightarrow (pp) + \alpha$ Existing diagnostic (WRF) can measure proton spectra for Ep \geq 4 MeV Compact spectrometer would measure low-energy protons and α s
- 3. $T + {}^{3}He \rightarrow \alpha + n + p$ $\rightarrow \alpha + D$ $\rightarrow {}^{6}Li + \gamma$

This spectrometer would allow measurements at ≥4 keV - extend CM energy range of measurements

- 4. $p + {}^{11}B \rightarrow 3\alpha$ No existing diagnostic can measure α spectra
- 5. $p + {}^{15}N \rightarrow \alpha + {}^{12}C$ No existing diagnostic can measure α spectra

Groups interested in these capabilities:
MIT, LLNL, LLE,
LANL, IU

CPS = Charged Particle Spectrometer WRF = Wedge Range Filter

High spectral accuracy at low yield will be obtained with a novel compact collimating charged-particle spectrometer (C³PS)

Design goal: Measurements of charged particle spectra (α , p, D, ...?) at low yield ($\geq 10^6$?) and low energy (1-5 MeV proton-equivalent?)

Does the community have ideas for other potential experiments with this diagnostic that would affect the design goal?

Existing magnetic spectrometers (CPS, TP) are limited to yields $\geq 10^9$

Summary

1. A compact collimating charged-particle spectrometer (C³PS) will allow novel nucleosynthesis experiments on OMEGA

This diagnostic will use collimating quadrupoles to achieve this goal

- 2. A Geant4-based code is being developed to optimize ion optical properties
- 3. Anybody in OLUG community with interest in experiments using this sort of capability should speak up or contact me:

Alex Zylstra (azylstra@psfc.mit.edu)