Spherical Crystal X-ray Imaging for MTW, OMEGA, and OMEGA EP

C.STOECKL, G. FISKEL, R. K. JUNGQUIST, P. M. NILSON, AND W. THEOBALD

University of Rochester, Laboratory for Laser Energetics

Spherical Crystal Imaging (SCI) Systems Have Been Installed on MTW, OMEGA and OMEGA EP

- An SCI system has a number of unique capabilities
 - narrow spectral width
 - high throughput
 - high spatial resolution
- SCI systems have been installed on all of the LLE laser facilities
 - MTW: Cu K $_{lpha}$ and Zr K $_{lpha}$ emission, Al He $_{eta}$ and Si He $_{lpha}$ backlighting
 - OMEGA EP: Cu K $_{\alpha}$ emission
 - OMEGA: Cu K $_{\alpha}$ emission, Si He $_{\alpha}$ backlighting
- Three major improvements are planned for the Si-SCI on OMEGA
 - aspheric crystal to reduce the astigmatism
 - time-resolved recording system using an x-ray framing camera (XRFC)
 - fast target insertion system for compatibility with CRYO

A Spherical Crystal Imager Can Work Either in Self-emission or Backlighting Mode

- Near-normal incidence
- Large field of view
- Low astigmatism
- Aim—to obtain high spatial resolution of \sim 5 μ m or better

Top view not to scale

Detector

Different Crystals Are Used for the Different Wavelength Requirements of the Applications

Emission line	Si He $_{lpha}$	Cu K _α	$\operatorname{Zr} K_{lpha}$
Wavelength (Å)	6.65	1.541	0.790
Energy (keV)	1.865	8.048	15.691
Quartz	1011	2131	2354
Reflection order	1	2	2
Bragg angle (°)	83.9	88.7	87

Two Imagers Have Been Fabricated by Photonics Product Group, Inc.

R = 500 mm

- Quartz crystal is 100 μ m thick and 25 mm in diameter
- The crystal is optically bound to a glass substrate that is spherically shaped to R = 500 mm
- The substrate is 10 mm thick and 30 mm in diameter
- One imager will be used on OMEGA EP and another on OMEGA

A 5- μ m Resolution is Predicted for the Cu K $_{\alpha}$ Imaging System

The Spherical Crystal Imager on MTW Uses a Manual Crystal Mount and Either CCD or IP Detectors

Wedge Targets Are Used to Study the Fast-Electron Conversion Efficiency

Front view

Side view

- One-piece Cu targets with ~100 \times 100 \times 40- μ m³ volume and 30°, 45°, and 60° opening angles
- Radius of curvature (~1 μ m) smaller than the focal-spot diameter
- Wedge target orientation sets laser polarization

A Spherical Bragg Crystal Imager Recorded the Spatially Resolved Cu K_{α} Emission

Homogeneous emission; indicates hot-electron refluxing in the targets.

2125

The OMEGA EP Crystal Imager Uses Two TIM's in Shot Mode and Three TIM's in Alignment Mode

- The crystal is located in TIM-10 285 mm from the target at a 1.3° angle of incidence
- The IP detector in TIM-13 is placed at 2.7 m from crystal for a magnification of ~9.5

The Crystal Holder Assembly Includes a Removable Blast shield and a Direct Line-of-Sight Shield

The Image-Plate Detector Assembly is Based on a LLNL Design with an Additional Collimator and Filter Mount

Bragg diffraction imager (BDI) Image plate New front end 30-mm ID collimator and additional filter

The First Data from the OMEGA EP SCI Showed High Resolution and a Good Signal/Background

Spatial resolution ~10 μ m

The OMEGA Spherical Crystal Imager is Based on the OMEGA EP Design Using Two Opposing TIM's

- The crystal is located in TIM-6, 267 mm from the target at a 1.3° angle of incidence
- The IP detector in TIM-4 is placed 3.6 m from the crystal for a magnification of ~13

A Pointer on the Crystal Mount Assembly is Used to Locate the Crystal at the Desired Distance from TCC

The Image Plate Detector is Housed in an Extension on the Back of TIM-4

The SCI Recorded Images from Cu-Doped, Cone-in-Shell Fast-Ignitor Targets

Cu-doped shell OMEGA UV beams only

Undoped shell OMEGA UV beams only

High-Quality Backlit Images of Implosions can be Obtained with a Crystal Imaging System

- The backlighter foil is not in the focus of the imaging system, so the backlighter uniformity does not depend on the laser-intensity distribution
- A collimator blocks the line-of-sight (LOS) to the backlighter, minimizing the background from short-pulse laser
- A direct LOS block shields the detector from background produced by the implosion target

The OMEGA SCI Setup was Recently Modified to a Si He_{α} Backlighting Configuration

Backlit Images of Implosions were Recorded with the Si-SCI System at 2.2 ns

The astigmatism of the imager is reduced with the smaller aperture.

A Reasonable Contrast is Obtained even with a Time-Integrated Recording System

