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Ignition tuning platforms and techniques first developed at Nova and OMEGA
have been critical to uncovering offsets between NIF data and modelling

NIC tuning / applied science since May 2011

— Tuning of shock timing and drive symmetry have empirically corrected
for physics uncertainties and improved ignition margin parameter “ITFx”
from .002 to 0.1

— X-ray radiography has mapped out capsule shell trajectory and profile for
comparison to Rocket model and simulations

— Experimental success has motivated more platforms not envisaged at
outset (4" Shock VISAR, Dual-axis VISAR, Refraction-Enhanced In-flight

Fuel Radiography, Fused Silica Sphere VISAR for Internal Drive, 2D
Deceleration Phase Fuel Radiography....)

Extending pulses (“no coast”) has further improved compression and
uncovered mix sensitivity to shell width

— Following improved 1D performance, we need to increase velocity while
keeping mix low by using more power and thicker capsules, more
efficient hohlraums (DU, rugby?) and potentially more efficient ablators



On March 21, 2012 NIF fires at 2 Million Joules—
surpassing its design goal

« 2.03 MJ to the final optic
« 1.875 MJ, 411 TW to target chamber center
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Further improvements in extending useable beam area and
2emne - NFosiz2e332 AM conditioning should lead to 500 TW peak power operation




The NIF point design has a graded-doped, CH

capsule in a hohlraum driven at Tr > 300 eV
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Implosion Performance

Lawson Criterion for ICF can be stated as product of

no-burn* yield and downscattered fraction (= fuel pr)
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Implosion Performance

We have increased ITFx from .002 to 0.1 by a series of
tuning campaigns optimizing target and laser parameters
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To optimize the target for ignition we adjust the

adiabat, velocity, mix and shape

o Adiabat
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We use a variety of platforms to assess and tune the

capsule adiabat, velocity, mix and shape

o Adiabat Velocity V
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Applied Science on NIC - Adiabat, velocity and mix are

linked through compressibility and mass remaining

a  Adiabat N Vimp ~ Vexin(M,y/M,) Velocity V

imp ~ \(ZTr/A)In(M,/M,)

 Fuel compression
« CH EOS on release

Hohlraum emissivity
Dopant albedo

CH NLTE atomic physics
Rocket efficiency
Hohlraum albedo
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Velocity

First step was to check peak hohlraum drive
and capsule response

o Adiabat

VISAR
interferometry Hot e-

Velocity V

X-ray Backlit
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Velocity

Higher than expected hohlraum drive at NIF scale

motivated switch to high flux model

Dante Flux vs Simulations —
Vacuum Hohlraums
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Velocity Symmetry Capsule | THD

A more careful comparison comparing LEH closure
suggests internal drive 5-10% less than originally inferred

870-eV X-ray Image through LEH Tr vs. Absorbed Laser Energy
Original
LEH -
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Meezan, IFSA 2011 proceedings

Inferred internal Tr from Dante flux and LEH X-ray image is lower principally
because final LEH size is = 7% larger in data than simulations

NIF-1011-23498.ppt Landen - NNSA Ignition Review, Oct. 28, 2011



Velocity Symmetry Capsule
On plus side, Au-lined DU hohlraums provide “

increased Tr and same laser energy coupling

9.43 mm by 5.75 mm Hohlraum, 3.1 mm LEH

Absorbed Fraction vs

Peak Tr vs Absorbed Laser Energy Incident Laser Energy
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extended pulses

Callahan, Phys. Plasmas, 2012
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Implosion Performance

Increasing energy from 1 to 1.3 MJ improved
yield 10x to ITFx = .02
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Velocity Backlit Capsule
Ablator velocity, mass and thickness are measured “

using backlit gated and now streaked radiography

Capsule backlit by x-rays from _
separate laser plasma 9 keV streaked radiograph

TS S
SN

Hicks, Physics Plagmg's','zml e ExnlésiOn,

Technique measures shell radius, velocity, pR profile, and remaining
ablator mass

Recently, as a by-product, we have been looking at energetics
information provided by explosion phase




Velocity Backlit Capsule
Radiography confirmed that switch from CHGe to Iower“

albedo, higher ablation rate CHSi increased peak velocity

Center-of-Mass Ablator Terminal P, = (1 - a)Vexdm/dt
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Adiabat

Velocity

We have extended radiography field-of vie
2 mm to check early shell trajectory and thickness

NIF-1011-23498.ppt
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Velocity Backlit Capsule
Perhaps most significant usage has been that x-ray “

radiography allows us to check Rocket Model

Peak Fuel Velocity vs Ablator Vo ~ VZTHA)IN(My/M,)
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Intensity

We are also designing a refraction-enhanced streaked

radiography experiment to measure in-flight fuel conditions

Traditional Radiography

= Area BL negates refraction
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Ping, JInst, 2011




Adiabat

Velocity V

X-ray Backlit
Shell Trajectory

Over last year, we have also tuned the shock
launch times to improve fuel compressibility
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~Ree -
Reentrant cone “Keyhole” now used routinely to measureis i

shock speeds in liquid D, as surrogate for solid DT

Top view of keyhole target

VISAR (90-315)
Model of the “keyhole” target Uncorjvlerted light
VISAR window ield cone

Carbon fiber

Support rods . » '
‘ . LEH shield

for VISAR

aperture

Boehly, Phys. Plasmas, 2011
Robey, Phys. Plasmas, 2012

NIF-0211-21074.ppt Robey - NIC Technical Review Committee, February 2011 23



Adiabat

We integrate up leading shock velocity to extract
overtake depths (at velocity discontinuities)
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Adiabat | EOS

By-product: Lower than expected 15t shock velocity

jump across CH-D, interface led to modified CH EOS table

First Shock Velocity D, vs CH
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Adiabat

We have set shock velocities and merge depths

Keyhole
to

design values within 3 shots, and shown reproducibility

NIF-1011-23498.ppt

Shock Velocities and Merge Depths in

Liquid D,
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Landen - NNSA Ignition Review, Oct. 28, 2011




Adiabat | pr Keyhole
4th shock velocities are lower and scale more slowly

with 4t rise slope than expected

4t Shock Merge Velocity vs.
4th Pulse Rise Time

150 Shock no longer reflectivein D,
Sﬂf,'::k E Wt? have des_igned a prt_aheat
Velocity | . steep Simulation l shle!ded solid fused silica
@ 125} for NIF - ball in keyhole geometry to
Merge | ouise 1 follow 4t shock acceleration
(um/ns) | shaping 410526 to later times
- \\*‘\\
100 Data - cusi - Tested successfully at
N110521 oe. OMEGA last week to 60 Mbar
Large LEH ¢ . pressures
75~11 I I | lllllll-

0 0.5 1 1.5 2 2.5
4th Rise Duration (ns)

4th shock velocities are 15 — 25% lower than
expected

NIF-1011-23498.ppt Landen - NNSA Ignition Review, Oct. 28, 2011 27



Adiabat NIE
Dual axis VISAR was then implemented to uncover " |

and fix 2nd - 4th shock asymmetry

N110823 VISAR data

time

Cone tip
Equator
\ Cone tip
Jr\\ S Pole
Shock transits from Shocks catch-up
ablator into D, “fuel” in D, “fuel”
N111108 VISAR data - fixed
D, filled
—— ———————— 3 } Pole

Shock asymmetry contributed to P, symmetry swings seen
in symcap/DT implosions

Moses_ John Szymanski & Pat Falcone, Nov. 15, 2011 28



Adiabat

Symmetry Capsule
Other source of fuel entropy, hot electron preheat, is “

inferred by imaging 100 keV capsule Bremsstrahlung

Hard X-ray Bremsstrahlung
Imaging

Filtered Image Plate

100 keV

——%

&

100 keV Image from Symcap
used to Infer Hot Electron Yield

Crossed 200 um
slits

Constructed out
of 5mmW

Hohlraum
900 J

Capsule

150 J

System absolutely calibrated

Doeppner, PRL (2012)

NIF-0611-22438.ppt

Landen - IFSA, Sept 12-16, 2011

150+25,-100 J > 170 keV* hot e-
@ capsule, acceptable

*Energy of hot electrons that could reach
fuel
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Implosion Performance

Shock timing improved fuel pr by = 2x to
over 1 g/cm? and ITFx reached .08
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Shape

Time-dependent drive symmetry control was

completed during last half of 2011

o Adiabat Velocity V

VISAR
interferometry Hot e-

=

“Keyhole”

X-ray Backlit
Shell Trajectory

2 ¥Convergent Ablator’

ConA
APLZIPLZ - g(A}\., nelTe,ﬁnsat)Pu X-ray or
/ / neutron
core image

“Reemit”

@V% Ge Spectra AR5 ~ RAP_
oft X-ray image

of Bi ball

N
///A&\% “HDT/DT” ™

M Mix
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Shape
Drive symmetry set by changing laser cone

fractions, either externally or by crossbeam transfer

Low cone fraction Correct cone fraction High cone fraction

Oblate implosion Round implosion Prolate implosion

Transfer is through 3-wave mixing process in presence of plasma grating
induced by crossing beams, sensitive to A\ between beams

AP ,/P ;= g(AN, n /T, dNng,)P

NIF-0211-21073.ppt Callahan — NIC Technical Review Committee, February 2011 32



Shape

We have repeatedly utilized crossbeam transfer

for core self-emission shape tuning

A\ = 0.5A

Y (nm)

AN =1A

A

He:H filled

hohlraums / |
~500 kJ ] i

11 ns

AP

L2/PL2 = 9(AN, n /T, on )P 4

He-filled |
hohlraums LASNEX
660 kJ scaling

16 ns

Michel, Phys.
Plasmas, 2010
0 -
o
a
N
o
-0.2
0.4
0

1 2
AM (A)

NIF-0211-21073.ppt

Callahan — NIC Technical Review Committee, February 2011

Lowest order core
asymmetries extracted
to * 2 ym accuracy

Complemented/checked
by neutron imaging on
DT shots

33



Shape

Core imaging has also uncovered effect of filltube on

azimuthal symmetry, reproducibly

Gated 9 keV polar x-ray image N111025

GXD (78°)

Y (um)

Fill tube (232°)

VEYRIER

-100 -50 0 50 100
X (um)

Smaller filltube has been developed, ready for testing in June

Future implosions will also test for low mode symmetry improvements
with Au-coated diagnostic holes




Shape W
With AA fixed, reemission sphere was then used

to measure and fix symmetry of early picket drive

Experimental Geometry

Bi sphere “Reemit” replaces
layered capsule

e

0.7 keV Gated
X-ray images

— —— - — -

~
- '’
IR Bismuth-coated
‘ "‘_ re-emission
L‘ sphere

S

Observable:
Limb brightness vs. angle as
picket cone fraction changed

Dewald, RSI (2008), PoP (2011)

NIF-0711-22501.ppt Landen - BOG S&T, July 12-13, 2011 35



Shape m“
Foot asymmetry, extracted to £1% accuracy,

confirms strong role of cross-beam transfer

P, Foot Picket Flux Asymmetry vs. Foot Inner Cone Fraction
10 | AN _ _
Incident uIatedV\;lth e
Drive eam transter
Asymmetry g |
Inferred
from Reemit
P_ (%
2( °) '10 |
|
|
|
-20 :
|
I ~
-30..W.|....|....|....|....|....
0.15 0.2 0.25 0.3 0.35 0.4 0.45
Incident Inner / total cone fraction @ 1 ns

Evidence of more transfer suggests 25% higher n /T, at interaction

AP ,IP ;= g(AA, n /T, dng )P, ,

NIF-0711-22501.ppt Landen - BOG S&T, July 12-13, 2011 36




Shape | Adiabat -
For measuring fuel shape and uniformity directly, 5. A
“Compton radiography” has been validated at OMEGA

Uses high energy Compton 60 -100 keV, 10 ym, 10 ps resolution
scattering rather than traditional radiographs of imploded 40 ym CH
photoabsorption to cast shadow

and overcome self-emission 8 atm. DD fill

3 atm. DD fill
A
116 Wicm?, 30 40-50 ps N
Gated 100
Imploded core MCP
scattering A -
v L]
60-200 keV
10-30 ym
Au wire

OMEGA Capsules show expected
Tommasini, Phys. Plasmas, 2011 5% limb darkening representative of
pr = 0.1 g/cm?

For NIF Compton radiography shot, expect 10x more contrast since 10x
more pr

4/24/12



Shape

Adiabat

Single quad gated Compton backlighter exceeding

hohlraum background has been demonstrated at NIF

0.5 Al blast shield

Al plate (3mm thick)

\ MCJ’

8 TW, 0.5 mm Cu filter
D NS\ 30 ym tilted / ]
—_—
Au wire ,:
§ 1200 mm ——— 80 mm
+— 100 mm —>\\ — |
8 TW, T .
5n Ta collimator MoSecone Cu step wedge

for penumbral
imaging

> 60 keV Penumbral Imaging shows 30 um
resolution achieved with expected SNR

kev/

100

Gray Value

50

0 100 200 300
Distance (um)

Optimized design to be tested by August

4/24/12

keV/Sr Spectrum
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Petawatt power from the
Advanced Radiographic
Capability (ARC)




Advanced
| Radiographic
—  Capability (ARC)

22EIM/sb - NIF-0910-3012382



Implosion Performance

Improving time-dependent intrinsic symmetry
improved yield by 20%
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Adiabat

Velocity V

X-ray Backlit
Shell Trajectory

We then revisited the limits on shell
and fuel compressibility

onvergent Ablator’

“K h I ”
eyno'e (ConA)

@1’% Ge Spectra

N of Bi ball
///A&\% “HDT/DT”

M Mix

X-ray or
neutron
core image

“Reemit”
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Adiabat Backlit Capsule
By extending pulse out to R = 300 ym “(No Coast)”, “

ablator stays compressed down to 200 um radius

Coast vs No coast
X-ray cores

Ablator thickness vs time
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Implosion Performance
Increasing pulse length increased areal density a "
further 20% to 1.3 g/cm? and ITFx has reached 0.1
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Mix

o Adiabat Velocity V

VISAR
interferometry Hot e-

~

With demonstrated control on shell and fuel
compressibility, we then probed mix “cliff”
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10-um-diameter fill tube — Fill Tube

Meets

I Specifications

2.5 ng of Epoxy
Adhesive

, . We selected the smoothest capsules and near-ignition level |
2‘4.5“”-‘3589 . | ice roughness quality for the recent DT implosions




THD ice layers are characterized in situ by
refraction-enhanced 8 keV radiography

‘ LEH view \

DT Ice Roughness
Power Spectrum
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Independent tests have shown that the layer quality is not affected
by shroud opening and quench
(cooling from 18.8 Kto 17.5 K in last 30s prior to shot)
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Mix

We find that DT yield drops for thinner in-flight ablator,
suggesting sensitivity to instability feedthrough

Yield vs In-flight Ablator Thickness
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Mix

Core x-ray Bremsstrahlung and Ge tracer line
emission levels confirm higher mix for thinner shells

Yield vs In-flight Ablator Thickness
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Velocity

To approach point design, we will need to increase

velocity while keeping mass remaining “mix safe”
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Implosion Performance

Increasing velocity and yield will likely require higher
Tr drive and thicker capsules available Summer 2012
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« Ignition tuning platforms and techniques first developed at Nova and OMEGA
have been critical to uncovering offsets between NIF data and modelling

NIC tuning / applied science since May 2011

— Experimental success and need to get better physics understanding has
motivated more platforms not envisaged at outset

 Extending pulses (“no coast”) has further improved compression and
uncovered mix sensitivity to shell width

— Following improved 1D performance, wewill need to increase velocity
while keeping mix low by using more power and thicker capsules, more
efficient hohlraums (DU, rugby?) and potentially more efficient ablators

* The initial ignition experiments only scratch the surface of NIF’s potential for
creativity and accomplishment in applied and basic science






Implosion Performance

Once optimized low mix 1D performance, we will
increase velocity using higher Tr, thicker capsules
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